
PROYECTO FIN DE CARRERA

T́ıtulo: Development of a framework for GeoLinked Data query and

visualization based on web components

Autor: Alejandro Saura Villanueva

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Tomás Robles Valladares

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Marifeli Sedano Rúız

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DEVELOPMENT OF A FRAMEWORK FOR

GEOLINKED DATA QUERY AND

VISUALIZATION

BASED ON WEB COMPONENTS

Alejandro Saura Villanueva

Junio de 2015

Resumen

Este documento contiene la descripción del proyecto fin de carrera enfocado en el desarrollo

de Sefarad-2.0. Dicho sistema es una aplicación web de consulta y visualización de datos

semánticos.

En primer lugar, analizamos el estado actual de la web semántica y el gran crecimiento

que está experimentando en la actualidad. Introduciremos la necesidad de desarrollar un

software que nos permita consultar los datos de dicha web semántica y tratar de indexarlos,

filtrarlos y presentarlos.

Partimos de Sefarad, propiedad del Grupo de sistemas inteligentes (GSI1). Analizamos

sus puntos fuertes y sus carencias y justificamos el desarrollo de esta nueva versión.

Presentamos y justificamos la elección de las tecnoloǵıas, teniendo como resultado un

conjunto de tecnoloǵıas nuevas como Dart yPolymer que aseguran una compatibilidad con

futuros paradigmas web.

Desarrollamos un estudio detallado de la arquitectura de nuestro proyecto final, aśı como

de cada uno de los módulos que lo componen.

Repasamos y analizamos las distintas fases de prototipado por las que ha pasado el

proyecto, adjuntando pruebas comparativas de rendimiento y especificando su funcionamiento,

arquitectura y posibles v́ıas alternativas. Posteriormente, desarrollamos la descripción de

la arquitectura y el funcionamiento del sistema final.

Aplicamos este sistema a varios casos de uso práctico. El más importante de ellos es

SmartOpenData, para el que construimos widgets y peticiones SPARQL para lograr un

resultado similar al obtenido en trabajos anteriores con el framework Sefarad 1.0.

Finalmente, presentamos las conclusiones del proyecto realizado y discutimos posibles

trabajos futuros y oportunidades de ampliación y aplicación.

Palabras clave: Tecnoloǵıas Semánticas, Sefarad-2.0, RDF, SPARQL, Dart, Angu-

lar.js, Polymer, Crossfilter

1http://www.gsi.dit.upm.es/

V

Abstract

This work contains the description of a master thesis focused on the development of Sefarad-

2.0. This system is a web based, semantic data browsing and visualization application.

In first place, we analyse the semantic web actual state and its actual growth. We

introduce the need of a software that enables to consult and index its data as well as filter

and render them.

Our starting point is Sefarad 1.0, property of the Intelligent Systems Group GSI2. We

analyse its strengths and weaknesses, justifying the development of a new version.

We also present the studied technologies and justify their choice, taking as result a com-

pilation of bleeding edge technologies as Dart and Polymer that assure future developments

compatibility.

We describe in depth the architecture of our final product, as well as we study each of

its submodules.

We list and test each prototype step we have take in this project, providing benchmark

results, comparing their features, describing their operation, architecture and possible devel-

opment alternatives. After that we present the description of the features and architecture

of the final system.

We apply this system to various practical case studies, being the most important be-

tween them SmartOpenData, for which we will develop some concrete widgets and SPARQL

queries so we get an equivalent but improved result to the one achieved with the previous

Sefarad 1.0 framework.

Finally, we present the project conclusions and discuss about future works and possible

applications and extensions.

Keywords: Semantic technologies, Sefarad-2.0, RDF, SPARQL, Dart, Angular.js,

Polymer, Crossfilter

2http://www.gsi.dit.upm.es/

VII

Agradecimientos

En primer lugar, gracias a mis padres por todos estos años de apoyo incondicional. Gracias

a las oportunidades y posibilidades que me han brindado he podido llegar a terminar esta

carrera y, en última instancia, este proyecto.

Gracias también a mis amigos por estos años de camino compartido, por no haberme

dejado sentir solo nunca. Gracias a mi novia por estar durante este tiempo a mi lado, por

todo su apoyo.

Dar las gracias también a mis compañeros de proyecto y de laboratorio, que han con-

strúıdo un ambiente de trabajo incréıble en el que ha sido muy facil integrarse. Ha sido una

experiencia de trabajo incréıble.

Por último, me gustaŕıa agradecer a Carlos, mi tutor, la confianza que ha depositado en

mi durante este tiempo y su gúıa a lo largo de este proyecto.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XVII

List of Tables XIX

1 Introduction 1

1.1 Context . 3

1.2 Master thesis goals . 4

1.3 Structure of this Master Thesis . 5

2 Enabling Technologies 7

2.1 Linked Data . 9

2.1.1 RDF . 9

2.1.2 SPARQL . 10

2.1.3 Geo Linked Data . 11

2.2 Web Components . 12

2.2.1 Custom HTML Elements . 12

2.2.2 HTML Imports . 12

XI

2.2.3 Templates . 12

2.2.4 Shadow DOM . 13

2.3 Polymer . 13

2.4 Client-side web technologies . 14

2.4.1 Bootstrap . 14

2.4.2 Leaflet . 17

2.4.3 Crossfilter . 20

2.4.4 Dc.js . 20

2.5 Server-side web technologies . 21

2.5.1 MongoDB . 21

2.5.2 Fuseki . 22

2.6 Sefarad 1.0 . 23

2.7 Summary . 24

3 Sefarad 2.0 25

3.1 Introduction . 27

3.2 Architecture . 27

3.2.1 Dashboard Architecture . 30

3.2.1.1 Main module . 30

3.2.1.2 Data pre-processor module 33

3.2.1.3 Web components . 34

3.2.1.4 Crossfilter-Dc.js . 38

3.2.2 Queries pipeline Architecture . 40

3.3 Interaction model . 47

3.3.1 Defining a data source . 47

3.3.2 Writing a query . 48

3.3.3 Visualising and editing a query . 49

3.4 Widgets . 52

3.4.1 Common implementation . 52

3.4.2 Specific implementation . 54

3.4.2.1 Faceted Search . 54

3.4.2.2 Results Table . 57

3.4.2.3 Pie Chart . 59

3.4.2.4 Bar Chart . 61

3.4.2.5 Bubble Chart . 62

3.4.2.6 Number Chart . 65

3.4.2.7 Reviews (Custom Widget example) 69

3.4.2.8 Map . 71

3.5 Summary . 75

4 Case Study 77

4.1 Introduction . 79

4.2 Slovak Demo: Smart Open data . 80

4.2.1 Origin . 80

4.2.2 Structure and pre-process . 86

4.2.3 Analysis Design . 89

4.2.4 Conclusions . 92

4.3 Restaurants Demo . 92

4.3.1 Origin . 92

4.3.2 Structure and pre-process . 94

4.3.3 Analysis Design . 97

4.3.4 Conclusions . 100

4.4 Tourpedia Demo . 100

4.4.1 Origin . 100

4.4.2 Structure and pre-process . 101

4.4.3 Analysis Design . 103

4.4.4 Conclusions . 104

4.5 Summary . 104

5 Evaluation 105

5.1 Introduction . 107

5.2 Sefarad 1.0 . 108

5.2.1 Description . 108

5.2.2 Benchmark . 111

5.2.3 Analysis . 111

5.3 Custom multi-query prototype . 112

5.3.1 Description . 112

5.3.2 Benchmark . 114

5.3.3 Analysis . 114

5.4 Bootstrap prototype . 115

5.4.1 Description . 115

5.4.2 Benchmark . 117

5.4.3 Analysis . 117

5.5 Crossfilter.js + dc.js prototype . 118

5.5.1 Description . 118

5.5.2 Benchmark . 119

5.5.3 Analysis . 119

5.6 Final Prototype: Web Components . 120

5.6.1 Description . 120

5.6.2 Benchmark . 120

5.6.3 Analysis . 121

5.7 Prototype comparison . 122

5.8 Summary . 122

6 Conclusions and future lines 123

6.1 Achieved goals . 125

6.2 Conclusions . 126

6.3 Future work . 127

A How to build a dashboard 129

A.1 Design . 131

A.2 Widget Definition Example . 132

A.3 Pre-processor . 134

Bibliography 135

List of Figures

2.1 Basic HTML Table . 14

2.2 adminLTE template . 15

2.3 Premade Charts . 16

2.4 Leaflet Marker and pop-up . 17

2.5 Leaflet GeoJSON Layer . 18

2.6 dc.js Charts . 20

2.7 Sefarad 1.0 . 23

3.1 Sefarad 2.0 Architecture . 28

3.2 Add Data Source Web Page . 47

3.3 Add Query Web Page . 48

3.4 Dashboard Tabs . 49

3.5 Query Editor . 50

3.6 Query Editor . 50

3.7 Faceted Search Widget . 54

3.8 Results Table Widget . 57

3.9 Pie Chart Widget . 59

3.10 Bar Chart Widget . 61

3.11 Bubble Chart Widget . 62

3.12 Number Chart Widget, skin 1 . 65

3.13 Number Chart Widget, skin 2 . 65

XVII

3.14 Reviews Custom Widget . 69

3.15 Polygons Map Widget . 71

3.16 Marker Map Widget . 74

4.1 Slovak Faceted Search . 89

4.2 Slovak Map . 90

4.3 Slovak Results Table . 90

4.4 Slovak Pie Charts . 91

4.5 Number Charts . 97

4.6 Pie Charts . 97

4.7 Price Bar and Bubble Charts . 98

4.8 Faceted Search and Results Table . 99

4.9 Map and Number Widgets . 103

4.10 Filters . 103

4.11 Reviews and Table widgets . 104

5.1 Sefarad-1.0 Dashboard . 108

5.2 Sefarad-1.0 Query Editor . 109

5.3 Custom multi-query prototype dashboard 112

5.4 Multi Query Architecture . 113

5.5 Bootstrap Prototype Dashboard . 115

5.6 Bootstrap Prototype Architecture . 116

5.7 Crossfilter.js + dc.js dashboard . 118

A.1 Navigation Menu . 132

A.2 Navigation Menu . 133

A.3 Navigation Menu . 134

List of Tables

4.1 Data INSPIRE designation . 84

XIX

CHAPTER1
Introduction

This chapter provides a conceptual introduction to the context and challenges of this

project besides a brief description of the state of the art. We will set up the goals and

the procedures that will be followed through all stages. Finally we describe further the

structure of this document, describing each chapter and its content.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

Since the concept of the Semantic Web [1] appeared, we have observed an important growth

in numbers and quality of applications that demonstrate the possibilities it has in different

areas.

Concretely, some initiatives have been developed around the inclusion of geospatial

data in the semantic web. This is the case of GeoLinkedData [2], a Spanish project that

make geospatial data from spain available in the form of a RDF [3] dataset, following the

INSPIRE [4] directive.

SmartOpenData [5] is another attempt to create a sustainable Linked Open Data in-

frastructure to promote environmental protection sharing data among public bodies in the

european union. It aims to demonstrate the impact of sharing this information from many

varied resources developing demonstrators that will provide high quality results in regional

development working with semantically integrated resources. In the course of the project

we will contribute to this project facing a case study based on a SmartOpenData dataset.

Despite the fact of this growth of available linked data, the user-friendly browsing of

this data at all their different facets remains on a dark spot. There is a need of visualization

tools that allows the user to browse that immense data sea.

In this context there are a number of technologies that attempt to solve this problem as

Payola [6] or redash.io [7]), both of them attempting to provide a intuitive interface between

users and datasets and offering some graphic tools to represent these data.

We have studied the workflow of these two platforms besides Sefarad’s and set them as

our main references in the process of designing our own interface.

3

CHAPTER 1. INTRODUCTION

1.2 Master thesis goals

The goal of this Master Thesis is to develop a web application that allows a non-technical

user to query geospatial linked data, retrieve and filter the results and make use of graphical

tools to extract useful information.

We present Sefarad, a web-based data visualization and browsing application. Sefarad

can be used to define, execute and visualize queries to different endpoints. The feature

that puts Sefarad apart is its analysis dashboard, capable of faceted search and map render

thousands of data thanks to the power of bleeding edge technologies as web components [8]

and crossfilter [9], as well as its focus on non-technical users, who are capable of analysing

datasets through our template queries system.

In order to achieve this, we will face these challenges:

• Study and test different web technologies that could help us to develop the application,

reaching conclusions for each one under certain criteria.

• Design the Architecture of the application through prototype iteration.

• Compare and document the features of each iteration, benchmarking where possible.

• Develop one or more case studies to test the final application and demonstrate its

possibilities.

• Document the final application to ease future developments or use cases.

4

1.3. STRUCTURE OF THIS MASTER THESIS

1.3 Structure of this Master Thesis

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1: provides an introduction to the context of the project, introducing concepts

like Semantic web and Linked Data. After that, we explain the goals of this master thesis

and provide the structural overview of this document.

Chapter 2: lists the main technologies that contribute in our project and justify their

use based on their advantages.

Chapter 3: describes in depth all the important aspect of Sefarad 2.0, our product,

Defining its architecture, its interaction model and reviewing all the widgets that we have

develop for it. It also gives a guideline to develop our own dashboard.

Chapter 4: describes the three case studies that we have faced in the project, detailing

for each one the origin of the data, how we process it and which analysis model have we

used to render that data.

Chapter 5: is a comparison of every stage the project has passed through, detailing

for each one the new additions, giving comparative measures and conclusions about what

works and what doesn’t, as well as arising problems and ideas of how to solve them.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. First of all

we must introduce Linked Data, RDF, SPARQL and GeoLinked Data [10, 11]. Then

we’ll move on presenting all technologies that enable us to build a semantic front end

with a data filtering and rendering system.

7

CHAPTER 2. ENABLING TECHNOLOGIES

8

2.1. LINKED DATA

2.1 Linked Data

Linked data is an attempt to describe entities, its properties and relationship with the ob-

jective of making them easily treated by machines. Linked Data has been recently suggested

as one of the best alternatives for creating these shared information spaces [12]. It describes

a method of publishing structured and related data so that it can be interlinked and become

more useful, which results in the Semantic Web1 (also called Web of Data).

This master thesis aims to create a web application that enables a non-technical user

to use the Linked Data Web. We will provide a framework where querying Linked Data

and Geo Linked Data and visualizing interactively the results through dashboards will be

possible.

2.1.1 RDF

Resource Description Framework (RDF) uses URIs to name the relationship between things

as well as the two ends of the link (this is usually referred to as a “triple”). Using this

simple model, it allows structured and semi-structured data to be mixed, exposed, and

shared across different applications.

Below, a sample RDF/XML file is shown, listing a table with two records and three

fields:

<RDF:RDF xmlns :RDF="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"

xmlns :ANIMALS="http :// www.some -fictitious -zoo.com/rdf#">

<RDF: Seq about="http :// www.some -fictitious -zoo.com/all - animals ">

<RDF: l i >

<RDF: Description about="http :// www.some -fictitious -zoo.com/ mammals /lion">

<ANIMALS: name>Lion</ANIMALS: name>

<ANIMALS: spec i e s>Panthera leo</ANIMALS: spec i e s>

<ANIMALS: c l a s s>Mammal</ANIMALS: c l a s s>

</RDF: Description>

</RDF: l i >

<RDF: l i >

<RDF: Description about="http :// www.some -fictitious -zoo.com/ mammals / hippopotamus ">

<ANIMALS: name>Hippopotamus</ANIMALS: name>

<ANIMALS: spec i e s>Hippopotamus amphibius</ANIMALS: spec i e s>

<ANIMALS: c l a s s>Mammal</ANIMALS: c l a s s>

</RDF: Description>

</RDF: l i >

</RDF: Seq>

</RDF:RDF>

Listing 2.1: RDF/XML document example

1http://www.w3.org/standards/semanticweb/

9

CHAPTER 2. ENABLING TECHNOLOGIES

Each RDF:Description tag describes a single record. Within each record, three fields

are described, name, species and class. Each of three fields have been given a namespace

of ANIMALS, the URL of which has been declared on the RDF tag, where the semantic

schema is defined.

The Linked Data paradigm hides the complexity of conceptual databases, maintaining

them internal to the data providers and offering an interface where the user only has to know

the semantics occurring in the data, the types that can conform subject-predicate expres-

sions as triples in RDF form. This focus developers on specifying and sharing vocabularies

describing their data instead of granting access to complex distributed databases.

2.1.2 SPARQL

Linked Data can be queried using SPARQL2 (an acronym for SPARQL Protocol and RDF

Query Language), a query language for RDF which became an official W3C Recommenda-

tion3. The SPARQL query language consists of the syntax and semantics for asking and

answering queries against RDF graphs and contains capabilities for querying by triple pat-

terns, conjunctions, disjunctions, and optional patterns. Results of SPARQL queries can

be presented in several different forms, such as JSON, RDF/XML, etc.

Here we present an example of a SPARQL query done against dbpedia, one of the largest

endpoints available online:

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX dbpprop: <http://dbpedia.org/property/>

PREFIX dbres: <http://dbpedia.org/resource/>

SELECT ?y WHERE {

?y dbpedia-owl:binomialAuthority dbres:

Johan_Christian_Fabricius.

}

limit 10

Listing 2.2: SPARQL query example

2http://www.w3.org/TR/rdf-sparql-query
3http://www.w3.org/blog/SW/2008/01/15/

10

2.1. LINKED DATA

In this query, we import the dbpedia semantic schema and look for entities that match

with our triples conditions. Please note how this is done through semantic statements

instead of tables exploration.

2.1.3 Geo Linked Data

In the geospatial context, GeoLinked Data4 is an open initiative whose aim is to enrich

the Semantic Web with geospatial data into the context of INSPIRE5 (INfrastructure for

SPatial InfoRmation in Europe) Directive. This initiative focuses its efforts to collect,

process and publish geographic information from different organizations around the world

and providing the suitable tools for handing all the data.

GeoSPARQL6 defines a vocabulary for representing geospatial data in RDF, and it

defines an extension to the SPARQL query language for processing geospatial data.

An example of these extra spatial relations is listed in 2.3.

PREFIX spatial:<http://jena.apache.org/spatial#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX gn:<http://www.geonames.org/ontology#>

Select *

WHERE{

?object spatial:nearby(40.74 -73.989 1 ’mi’).

?object rdfs:label ?label

}LIMIT 10

Listing 2.3: geoSPARQL query example

4http://linkedgeodata.org/
5http://inspire.ec.europa.eu/
6http://www.opengeospatial.org/standards/geosparql

11

CHAPTER 2. ENABLING TECHNOLOGIES

2.2 Web Components

Web Components [8] are a set of standards currently being produced by Google engineers as

a W3C specification that allows for the creation of reusable widgets or components in web

documents and web applications. The intention behind them is to bring component-based

software engineering to the World Wide Web. The components model enables encapsulation

and interoperability of individual HTML elements.

This idea comes from the union of four main standards: custom HTML elements, HTML

imports, templates and shadow DOMs.

2.2.1 Custom HTML Elements

Custom Elements let the user define his own element types with custom tag names. JavaScript

code is associated with the custom tags and uses them as an standard tag. That code gets

executed each time the compiler reads that tag.

Standard DOM methods can be used on Custom Elements, as accessing their properties,

attaching event listeners, and styling them using CSS as with any standard tag.

Thanks to custom tags the amount of code is reduced, internal details encapsulated,

APIs per element type can be implemented, productivity is increased by reusing elements

and advantage of inheritance is taken to develop new tags based on existing ones.

2.2.2 HTML Imports

HTML Imports let users include and reuse HTML documents in other HTML documents,

as ’script’ tags let include external Javascript in pages. In particular, these imports include

custom element definitions from external URLs. HTML imports use the import relation on

a standard ’link’ tag.

2.2.3 Templates

Templates define a new ’template’ element which describes a standard DOM-based approach

for client-side templating. Templates allow developers to declare fragments of markup which

are parsed as HTML, go unused at page load, but can be instantiated later on at runtime.

12

2.3. POLYMER

2.2.4 Shadow DOM

There is a fundamental problem that makes widgets built out of HTML and JavaScript hard

to use: the DOM tree inside a widget isn’t encapsulated from the rest of the page. This

lack of encapsulation means that the document stylesheet might accidentally be applied to

parts inside the widget; JavaScript might accidentally modify parts inside the widget; IDs

might overlap with IDs inside the widget; and so on.

Shadow DOM separates content from presentation therefore eliminating naming conflicts

and improving code expression. It is internal to the element and hidden from the end-user.

2.3 Polymer

Polymer7 is an implementation o these four technologies in one elegant framework of con-

structing web-components.

Polymer makes it simple to create web components, declaratively. Custom elements are

defined using our custom element, ’polymer-element’, and can leverage Polymer’s special

features. These features reduce boilerplate and make it even easier to build complex, web

component-based applications:

• Two-way data binding: Data binding extends HTML and the DOM APIs to support a

sensible separation between the UI (DOM) of an application and its underlying data

(model). Updates to the model are reflected in the DOM and user input into the

DOM is immediately assigned to the model.

• Declarative event handling: Binding of events to methods in the component. It uses

special on-event syntax to trigger this binding behavior.

• Declarative inheritance: A Polymer element can extend another element by using the

extends attribute. The parent’s properties and methods are inherited by the child

element and data-bound.

• Property observation: All properties on Polymer elements can be watched for changes

by implementing a propertyNameChanged handler. When the value of a watched

property changes, the appropriate change handler is automatically invoked.

7https://www.polymer-project.org/0.5/

13

CHAPTER 2. ENABLING TECHNOLOGIES

2.4 Client-side web technologies

2.4.1 Bootstrap

Bootstrap8 is the most popular HTML, CSS, and JavaScript framework for developing

responsive web sites. It features a multidevice preprocessor, based in Less9 and Sass10 that

provides instant coherent style to the most common HTML elements and CSS components

as tables, buttons, text fields, etc.

It offers a simple but powerful interface. All we have to do to integrate bootstrap styled

elements into our website is add key class names to the supported elements and bootstrap

will do the rest.

An example applied to HTML buttons and tables tables:

Figure 2.1: Basic HTML Table

8http://getbootstrap.com/
9http://lesscss.org/

10http://sass-lang.com/libsass

14

2.4. CLIENT-SIDE WEB TECHNOLOGIES

Bootstrap offers flexibility and reusability, and that’s the main reason why a lot of

developers have been working into web site templates (free and commercial) at the top

of the bootstrap functionality, adding their own extensions and producing an easy visual

solution to the graphical user interface of a web application.

In the case of this project, we have explored some options and chosen AdminLTE11.

Figure 2.2: adminLTE template

11https://almsaeedstudio.com/

15

CHAPTER 2. ENABLING TECHNOLOGIES

This bootstrap template is free and open source, built on top of bootstrap 3, responsive,

easy to customize and has an active community. But further than the visual style, this

template offer us a set of features very interesting for our purposes in the data analysis.

It implements libraries as Flot.js12 and Morris.js13, two graph renderers that we could

eventually inject in our dashboards with some works transforming them into Sefarad widgets

(See widgets chapter).

Figure 2.3: Premade Charts

It also provides some useful mechanisms as 404 error screen, log-in/log-out windows,

lockscreens, etc.

It definitely provides a good graphical source for future development and it would be

interesting to continue integrating its widgets as Sefarad’s.

It presents some problems though at the time of using its functionality inside Polymer

components. We will explore this problem in chapter 3.

12http://www.flotcharts.org/
13http://morrisjs.github.io/morris.js/

16

2.4. CLIENT-SIDE WEB TECHNOLOGIES

2.4.2 Leaflet

Leaflet14 is a modern open-source JavaScript library for interactive maps. Leaflet is designed

with simplicity, performance and usability in mind. It works efficiently across all major

desktop and mobile platforms out of the box, taking advantage of HTML5 and CSS3 on

modern browsers while still being accessible on older ones. It can be extended with a huge

amount of plugins, has a beautiful, easy to use and well-documented API and a simple,

readable source code. Weighing just about 33 KB of JS code, it has all the features most

developers ever need for online maps.

It offers support to markers and pop-up binding, that we will use extensively in our

demos.

Figure 2.4: Leaflet Marker and pop-up

We chose this framework as a replacement of Open Layers 3 due to the features it

provides for geoJSON polygon and multi-polygon rendering, with an automatic coordinate

conversion between the base layer and the polygons definition. GeoJSON is becoming a very

popular data format among many GIS technologies and services — it’s simple, lightweight,

straightforward, and Leaflet is quite good at handling it.

A GeoJSON object may represent a geometry, a feature, or a collection of features.

GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint,

MultiLineString, MultiPolygon, and GeometryCollection. Features in GeoJSON contain

a geometry object and additional properties, and a feature collection represents a list of

features.

14http://leafletjs.com/

17

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.5: Leaflet GeoJSON Layer

In 2.4 we have listed an example of a simple GeoJSON feature.

Listing 2.4: geoJSON example

var geo j sonFeature = {
"type" : "Feature" ,

"properties" : {
"name" : "Coors Field" ,

"amenity" : "Baseball Stadium" ,

"popupContent" : "This is where the Rockies play!"

} ,

"geometry" : {
"type" : "Point" ,

"coordinates" : [−104.99404 , 39 . 75621]

}
} ;

Listing 2.4: geoJSON example

18

2.4. CLIENT-SIDE WEB TECHNOLOGIES

GeoJSON objects are added to the map through a GeoJSON layer. The style option

can be used to style features, even based on their properties as we can observe in the code

block 2.5.

L . geoJson (geo j sonFeature) . addTo(map) ;

L . geoJson (s t a t e s , {
s t y l e : function (f e a t u r e) {

switch (f e a t u r e . p r o p e r t i e s . party) {
case ’Republican’ : return { c o l o r : "#ff0000"} ;

case ’Democrat’ : return { c o l o r : "#0000ff"} ;

}
}

}) . addTo(map) ;

Listing 2.5: Styling By Property Example

The onEachFeature option is a function that gets called on each feature before adding it

to a GeoJSON layer. A common reason to use this option is to attach a popup to features

when they are clicked, as we list in 2.6.

function onEachFeature (f ea ture , l a y e r) {
// does this feature have a property named popupContent?

i f (f e a t u r e . p r o p e r t i e s && f e a t u r e . p r o p e r t i e s . popupContent) {
l a y e r . bindPopup (f e a t u r e . p r o p e r t i e s . popupContent) ;

}
}

Listing 2.6: Pop-up Binding

19

CHAPTER 2. ENABLING TECHNOLOGIES

2.4.3 Crossfilter

Crossfilter15 is a JavaScript library for exploring large multivariate datasets in the browser.

It supports extremely fast (less than 30 milliseconds) interaction with coordinated views.

Since most interactions only involve a single dimension, only small adjustments are made

to the filter values, so incremental filtering is significantly faster than starting from scratch.

Crossfilter uses sorted indexes to make this possible, dramatically increasing the perfor-

mance of live histograms and top-K lists.

2.4.4 Dc.js

dc.js16 is a javascript charting library with native crossfilter support that enables highly

efficient exploration on large multi-dimensional dataset. It uses d3 engine to render charts

in css friendly svg format. Charts rendered using dc.js are naturally data driven and reactive

therefore providing instant feedback on user’s interaction. dc.js provides us a great library

of charts ready to use, as we illustrate in figure 2.6.

Figure 2.6: dc.js Charts

15http://square.github.io/crossfilter/
16http://dc-js.github.io/dc.js/

20

2.5. SERVER-SIDE WEB TECHNOLOGIES

Besides, it offers a base chart that can be used to build a graphical interface on it. Base

chart is an abstract functional object representing a basic dc chart object for all chart and

widget implementations. Every function on the base chart are also inherited available on

all all chart implementations extending base chart in dc library. We will use this one in a

great number of widgets, and propose this template (after being integrated into Polymer)

as the starting point at the task of constructing a custom widget for Sefarad-2.0.

Despite all these great capabilities, dc.js still has some problems, as the initialization of

widgets at runtime. We will detail this problem in chapter 3.

2.5 Server-side web technologies

2.5.1 MongoDB

MongoDB17 is an open-source document-oriented NoSQL database distributed under the

GNU Affero General Public License18 and the Apache License19.

MongoDB is structured into collections instead of table-based relations. Those collec-

tions are a set of BSON (Binary JSON) documents containing a set of fields or key-value

pairs: keys are string and values cans be of so many types (string, integer, float, timestamp,

etc.).

In MongoDB, information is stored in form of documents which doesn’t have a predefined

schema. In place of that, these documents have a JSON array structure with multiple depth

levels.

MongoDB is optimized for query operations. You can store as much information as you

need in a document without first defining its structure, and this data will be able to be

queried. In order to retrieve one o more documents, you may run your own query specifying

some criteria or conditions. A query may support search by field, range or conditional

statements such as the existence or not of a key. This makes the system highly scalable.

This fits perfectly with our needs. We will use MongoDB to store user accounts,

data-sources definitions, queries and their results in json or geo-json, output formats from

SPARQL endpoints.

17https://www.mongodb.org/
18http://www.gnu.org/licenses/agpl-3.0.html
19http://www.apache.org/licenses/LICENSE-2.0.html

21

CHAPTER 2. ENABLING TECHNOLOGIES

Moreover, we can use mongoDB as a datasource itself, and support queries. In block

code 2.7 we show an example of a query pointed to a mongoDB.

{"$or" : [{"year" : {"$gt" : 1965 ,"$lt" : 2010}} , {"rating" : {"$gt" : 6}}]}

Listing 2.7: Map Widget onClick Code

This query selects all movies made between 1965 and 2010 or with a minimun rate of 6,

expecting a response in JSON format.

MongoDB supports drivers for most common programming languages. Due to the fact

that the structure of a document is similar to a JSON object and most of programming

languages drivers support the management and conversion of JSON datatypes to language-

specific structures, it is easy to communicate and manipulate the data. In the case of this

project, we create a mongoDB and connect to it with the functions of the DART framework.

2.5.2 Fuseki

Fuseki 20 is a SPARQL server. It provides REST-style SPARQL HTTP Update, SPARQL

Query, and SPARQL Update using the SPARQL protocol over HTTP. We will use a Fuseki

server for storing our own RDF files containing geoSPARQL data as a external tool for

Sefarad datasets.

20https://jena.apache.org

22

2.6. SEFARAD 1.0

2.6 Sefarad 1.0

Sefarad[13][14] is a web application developed to explore linked data by making SPARQL

queries to the chosen endpoint without writing more code, so it provides a semantic front-

end to Linked Open Data. It allows the user to configure his own dashboard with many

different widgets to visualize, explore and analyse graphically the different characteristics,

attributes and relationships of the queried data.

Sefarad is developed in HTML521 and follows a Model View-View Model (MVVM)

pattern performed with the Knockout22 framework. This JavaScript library allows us to

create responsive and dynamic interfaces which automatically is updated when the data

changes. The different parts of the UI are connected to the data model by declarative

bindings.

Sefarad consists of two different tabs: dashboard and SPARQL Editor. The first tab

allows the user to perform faceted search on the data accessed, so the users can explore a

collection of information by applying multiple filters. In the SPARQL Editor tab we can

write and preview queries to a defined endpoint.

Figure 2.7: Sefarad 1.0

21http://www.w3.org/TR/html5/
22http://knockoutjs.com/

23

CHAPTER 2. ENABLING TECHNOLOGIES

We will use this framework as a guide and reference to develop our own framework

implementing the same functionality and growth capabilities.

2.7 Summary

We have seen in this chapter a couple of distinct technologies that we use in our final

prototype:

• Linked Data: We use the concepts of linked data philosophy querying RDF datasets

through SPARQL queries. On top of that basis we use geoSPARQL directives to take

advantages of Geo Linked Data location features.

• Web Components: we make from web components our basic widget structure, taking

into consideration its four principles.

• Polymer: It is the web components concrete framework that we have. It provides us

an easy way of implementing web components in our web.

• Mongo DB: offers us a repository where we will store user data as data sources and

queries definitions, as well as this kind of databases will serve us as data sources.

• Bootstrap - AdminLTE: We use bootstrap to style our web and take advantage of its

style encapsulation. In this context, on top of bootstrap, we choose AdminLTE as a

template to construct our graphical interface.

• Leaflet: We use Leaflet to implement a map widget with geoJSON compatibility and

an interesting set of features.

• Dc.js - Crossfilter: We use Crossfilter as the filtering core of our framework and, on

top of that, Dc.js makes charts for us and manages them tracking their filters and

updating their graphics.

• Sefarad 1.0: It is our predecessor and, therefore, our reference in matter of features

and interaction design.

24

CHAPTER3
Sefarad 2.0

In this chapter we will describe the details of how Sefarad 2.0, our final prototype,

works. We will present all distinct parts that constitute the application and the mod-

ules that form each one. We will define the interaction model that we have design for

its use and then we will present each widget developed for the case studies and how to

use it.

25

CHAPTER 3. SEFARAD 2.0

26

3.1. INTRODUCTION

3.1 Introduction

Sefarad 2.0 has been under development for about a year, and has become a fairly com-

plex piece of software that integrates some emerging technologies. This integration is not

trivial and may need a further explanation for a new developer. This chapter is a detailed

description of how Sefarad 2.0 works. We will start with the architecture, explaining all

modules that take part in the program and how they relate to each other. Then we will

move on defining the interaction model of Sefarad or how is it planned to be used. This

section could be thought as a use manual. After that, we will list each Sefarad’s widget and

explained how is it constructed and how it can be used.

In chapter 5 we will follow the steps we took to develop Sefarad 2.0 from Sefarad 1.0,

listing all prototypes we developed on the way and comparing them.

3.2 Architecture

Sefarad 2.0 is formed from various pieces or modules of software working together. At a

wide sense, it can be divided into two main module groups: the dashboard modules and

the queries pipeline modules. Both of them touch a mongoDB, containing the user defined

data and being a nexus between the two groups.

The dashboard is mainly made of Web Components, that take data, render it, and

provide user interaction; and a controller module that provides the necessary backup for

the widgets to use Crossfilter and Dc.js. This controller will also feed the widgets at the

initialization stage, communicate with the mongoDB and query the corresponding data

source.

On the other hand, the queries pipeline modules are meant to define and modify data

sources and queries and push them to the mongoDB repository, so the dashboard modules

are able to retrieve and work with them. We have two modules here, each of them dedicated

to one type of element, data source or query.

27

CHAPTER 3. SEFARAD 2.0

The architecture of the application can be resumed in the graph 3.1.

Figure 3.1: Sefarad 2.0 Architecture

This architecture has some advantages and disadvantages, mainly associated to the use

of web components and Dc.js, new technologies not thought to be use as we do here.

28

3.2. ARCHITECTURE

Some of the advantages that Sefarad 2.0 exhibits are: The code is modular and easily

expandable. Thanks to the use of the web component technology each module is small and

readable, it’s easy to focus on one part of the code and it favours team work as the influence

between modules is minimized, so we can lose care about interfering with another team

mate’s work. Dc.js provides filter management and data spreading between our widgets,

so we don’t have to program or take care about these low level task. In this architecture

we have separated the chart creation from the main object so the number of widgets is not

relevant to Dc.js in order to work, it will be able to identify and track all widgets without

problems.

Nervertheless, the use of components has brought some drawbacks, that are likely to

be overcome once this technology reachs a certain degree of maturity. One example is the

impossibility to add new charts at runtime. This is true due to the nature of Dc.js, that

creates an unique element inside the controller module at the initialization time when it

has already retrieve all widgets. Creating a new widget and reconstructing the Dc.js object

would require necessarily to reload web page and reconstruct all widgets.

There is also a mayor disadvantage on the use of web components. Web components

use shadow DOM, an interesting technology that, at counter part, impede us from using

jQuery. This is an important issue, as there are a huge number of interesting jQuery plugins

that we might be interested in, but that we will find problems at the time of integrating

them. Although hard, it is not impossible to adapt a jQuery plugin into a web component.

All we have to take care is wrapping all jQuery DOM objects retrieving with functions that

respect the shadow DOM.

We provide an example of solving this problem with the leaflet map widget.

Lets break this architecture into pieces and explain further the function of each one.

29

CHAPTER 3. SEFARAD 2.0

3.2.1 Dashboard Architecture

The dashboard is driven by some modules that interact between them: the main module,

the data pre-processor, web components and Dc.js-Crossfilter.

3.2.1.1 Main module

The dashboard is controlled from a main module. This module is written in javascript and

Dart but, in the future, it will be translated to pure Dart.

This main module has two functions, query a data source and authenticate users.

To query a data source, the module must access to our mongoDB repository to retrieve

which query we have to execute and which endpoint we have to point to. Currently this

feature is under development so, instead of retrieving that information from mongoDB, it

is contained in the HTML document specific of the dashboard.

Once the query and data source are defined, the main module executes the query with

the language-specific code. The example listed below (3.1) illustrates how to fire SPARQL

queries:

var getPolygonsFromEuro = function () {

i f (currentQuery != lastQuery) {
var po lygons f euro query = currentQuery ;

var temporal = queryEndPoint + ’?query=’ +

encodeURIComponent (po lygons f euro query) ;

var req = new XMLHttpRequest () ;

req . open ("GET" , temporal , true) ;

var params = encodeURIComponent (po lygons f euro query) ;

req . setRequestHeader ("Content-type" , "application/x-www-

form-urlencoded") ;

req . setRequestHeader ("Accept" , "application/sparql-results+

json") ;

req . send () ;

c on so l e . l og ("polygons query sent") ;

req . onreadystatechange = function () {<polymer−element name

=’generic-widget’ class=’dc-element’ a t t r i b u t e s=’param’>

i f (req . readyState == 4) {
i f (req . s t a t u s == 200) {

conso l e . l og ("polygons query response received")

30

3.2. ARCHITECTURE

;

var r e s = eva l ("(" + req . responseText + ")") ;

var data = JSON. s t r i n g i f y (r e s . r e s u l t s . b ind ings)

;

rawData = JSON. parse (data) ;

dataReady = true ;

} else {
}

}
} ;

return fa l se ;

} else

{
$. getJSON ("assets/cache.json" , function (r e s u l t) {

conso l e . l og ("polygons query response picked from local"

) ;

var data = JSON. s t r i n g i f y (r e s u l t) ;

rawData = JSON. parse (data) . r e s u l t s . b ind ings ;

dataReady = true ;

}) ;

}
} ;

Listing 3.1: Execute Query Code

Regarding authentication and authorization, the design is based on Dart facilities backed

by mongoDB (3.2). It checks the mongoDB repository at starts a new session in case of

success:

class SignGoogle {
s t a t i c bool logged = fa l se ;

s t a t i c var host = "localhost:1990" ;

void l o g i n () {
InputElement i e = que rySe l e c t o r ("#password") ;

i f (i e . va lue == "****") goog leLog in . l o g i n () ;

else {
i e . va lue = "" ;

window . a l e r t ("Invalid Admin Password") ;

}
}

31

CHAPTER 3. SEFARAD 2.0

St r ing getHost () => host ;

bool i sLogged () => l ogged ;

void logout () {
goog leLog in . l ogout () ;

logged = fa l se ;

r e s e t P r o f i l e () ;

}

f i n a l goog leLog in = new GoogleOAuth2 (

"675126827387-jrvg34sf52dni2o8o5kjgthc3abm8s0u.apps.

googleusercontent.com" ,

["openid" , "email"] ,

tokenLoaded : l og inCa l lback) ;

s t a t i c void l og inCa l lback (Token c l ave) {
f i n a l googlePlusURL = "https://www.googleapis.com/plus/v1/

people/me" ;

var r eque s t = new HttpRequest () ;

r eque s t . open ("GET" , googlePlusURL) ;

r eque s t . setRequestHeader ("Authorization" , "${clave.type} ${

clave.data}") ;

r eque s t . onReadyStateChange . l i s t e n (() {
i f (r eque s t . readyState == HttpRequest .DONE &&

(reques t . s t a t u s == 200 | | r eque s t . s t a t u s == 0)) {
p r i n t P r o f i l e (r eque s t . responseText) ;

logged = true ;

}
}) ;

r eque s t . send () ;

}
[. . .]

}

Listing 3.2: Authentication Code

32

3.2. ARCHITECTURE

3.2.1.2 Data pre-processor module

This module takes the data retrieved from the query and is thought as a space for the

application programmer for changing all parameters needed, so Crossfilter will receive later

proper values. This can be used to fix bad values in certain parameters, or for unifying

values that are not expressed the same way. Below (3.3) we can see an example of one of

this blocks, designed for the restaurants demo:

rawData . forEach (function (d) {

//Unifying reservations facet values

var s = d . r e s e r v a t i o n s . va lue . tr im () ;

var sub = s . subs t r (s . l ength − 3) ;

d . newReservations = {} ;

i f (sub == ’Yes’) {
d . newReservations . va lue = ’yes’ ;

}
else {

d . newReservations . va lue = ’no’ ;

}

//extract the name from the element URI

var s t = d . d . va lue ;

d . name = {} ;

d . name . va lue = s t . subs t r (s t . l a s t IndexOf (’/’) + 1 , s t . l ength) .

r e p l a c e (/−/g , " ") ;

//Give each element an unique ID

rawData . forEach (function (d) {
d . t o t a l = 1 ;

d . id = idGen ;

idGen++;

}) ;

}) ;

Listing 3.3: Pre-processor Code

With this code we fixed the retrieved data, so it is ready now for Crossfilter to process.

33

CHAPTER 3. SEFARAD 2.0

3.2.1.3 Web components

Web components are a main feature of Sefarad 2.0, and in this section we will show how

we exploit their capabilities.

All widgets in Sefarad 2.0 are web Components (used under the Polymer implementa-

tion) and, as them, they are ideally encapsulated and isolated from the rest of the code.

First, we have a special zone 3.4 in the HTML of each dashboard to import all widgets’

web Components.

<!−− POLYMER COMPONENTS IMPORT ZONE −−>

< l i n k r e l="import" h r e f="polymer-elements/pie-chart/pie-chart.

html">

< l i n k r e l="import" h r e f="polymer-elements/bar-chart/bar-chart.

html">

< l i n k r e l="import" h r e f="polymer-elements/leaflet-map/leaflet-

map.html">

<!−− end/ POLYMER COMPONENTS IMPORT ZONE −−>

Listing 3.4: Web Components Import

Then, each widget is instantiated in the dashboard through its custom HTML tag. For

example, if we have imported a faceted-search widget and now we want to include it in our

dashboard, the required code would be the one listed below (3.5).

34

3.2. ARCHITECTURE

<!−− f ace ted−search −−>
<!−−Widgets must have ’widget’ class in order to render t h e i r

l oad ing screen−−>
< div class = "box box-primary widget" >

< div class = "box-header" >

< i class = "glyphicon glyphicon-search" > < / i> < h3 class = "

box-title" > Search < /h3> < /div>

<!−− box−body −−>
< div class = "box-body chart-responsive" >

<!−− WEB COMPONENT −−>
< f ace ted−search params = "designation, designationScheme"

class = "dc-element" >

< / faceted−search>

<!−− / .WEB COMPONENT −−>

< /div>

<!−− / . box−body −−>
< /div>

<!−− / . faceted−search −−>

Listing 3.5: Web Components Insertion

Reading carefully, it can be noticed that the entire widget is encapsulated inside the

faceted-search tag, with its parameters set as tag parameters, while the rest of the code is

the box styled widget of AdminLTE.

A Polymer element is a separated HTML document. It has two main and different parts:

An HTML template and a script.

The HTML template of the web component is the code that will be injected into our

dashboard once the widget is initialized. Here we can write all the HTML code that we

want to be rendered inside the widget. We can also use and import custom styles, that

will not be affected then by the outside’s style. The same issue occurs with the script of

web components, it only affects to what is inside the template and doesn’t reach the other

widgets templates.

35

CHAPTER 3. SEFARAD 2.0

This code, therefore, is completely independent of the rest of the dashboard, and that

is the main advantage that we receive from the use of web components.

So, a basic web component will have the form of the code listed in 3.6.

< l i n k r e l="import"

h r e f="../bower_components/polymer/polymer.html">

<polymer−element name="proto-element">

<template>

Im proto−element. Web component prototype .

</template>

<s c r i p t >

Polymer ({
ready : function () {
//...

}
}) ;

</s c r i p t >

</polymer−element>

Listing 3.6: Web Component Structure

36

3.2. ARCHITECTURE

Inside this HTML template we can use a number of useful features as data-bindings

with the data model or auto iterations through data. We have an example of how to use

this bindings in the code listing 3.7.

<polymer−element name="fav-color">

<template>

This i s {{owner}} fav−c o l o r element .

{{owner}} l i k e s the c o l o r

{{ c o l o r }}.

</template>

<s c r i p t >

Polymer ({
owner : "Daniel" ,

c o l o r : "red"

}) ;

</s c r i p t >

</polymer−element>

Listing 3.7: Web Component Structure

In 3.7 we can observe that we bind a set of parameters from the web component’s script

with the template, being that relation completely isolated from the rest of the web’s code.

We will go into detail of how we define our web components in section 4.3.1, ”Widgets

common implementation”.

37

CHAPTER 3. SEFARAD 2.0

3.2.1.4 Crossfilter-Dc.js

Crossfilter and Dc.js are distributed between the main module and the widgets on the

dashboard system.

At one hand, when the query data is retrieved and after the pre-processing module, we

create the Crossfilter object. This Crossfilter object and the rawData (for render purposes)

is then propagated to all widgets as shown in the 3.8 listing.

ndx = c r o s s f i l t e r (rawData) ;

var dcElements = $ (".dc-element") ;

f o r (var i = 0 ; i < dcElements . l ength ; i++) {

//Crossfilter object Propagation

dcElements [i] . c r o s s f i l t e r = ndx ;

dcElements [i] . geoJSON = rawData ;

//Widget initialization, where dimensions are created:

dcElements [i] . i n i t () ;

}
dc . r enderA l l () ;

Listing 3.8: Crossfilter Initialization

On the other hand, after the injection, every widget gets its init() function called,

as shown in the previous figure. In this function, each widget creates a new Crossfilter

dimension and group and initializes a new Dc.js chart with them.

Here is the code for a pie chart as an example, please note the dimension and group

definition over the Crossfilter object that we propagated in the controller code.

We also create the Dc.js charts here. With this, we are telling the Dc.js unique object,

located at the controller level, that it needs to keep track of this chart and record its filter

and update actions (3.9).

38

3.2. ARCHITECTURE

var p = this . param ; //set the params from the HTML tag

//Dimension creation

this . dimension = this . c r o s s f i l t e r . dimension (function (d) {
return d [p] . va lue ;

}) ;

//Group creation

this . group = this . dimension . group () . reduceCount () ;

//Dc chart creation

this . chart = dc . pieChart ("#chart") ;

this . chart

. o r d i n a l C o l o r s (["#1E7751" ,"#07A360" ,"#21553F" ,"#25342E"])

. width (175) . he ight (175)

. dimension (this . dimension)

. group (this . group)

. innerRadius (30)

. root () [0] [0] = this . $. chart ;

this . $. chart . c l a s s L i s t . add ("dc-chart") ;

Listing 3.9: Dc Initialization

In the Crossfilter initialization figure we call the dc.renderAll() function at the end of

the code. When all charts are set (after the init() function of each web component) we will

render them all at once, so there will be an unique Dc.js object maintaining a list of all

active filters and managing all Crossfilter dimensions.

Now, a few words about Crossfilter dimensions: Dimensions are bound to the Crossfilter

once created. Creating more than 8 dimensions, and more than 16 dimensions, introduces

additional overhead. More than 32 dimensions at once is not currently supported, but

dimensions may be disposed of using ”dimension.dispose()” function to make room for new

dimensions. Dimensions are stateful, recording the associated dimension-specific filters, if

any. Initially, no filters are applied to the dimension: all records are selected. Since creating

dimensions is expensive, you should be careful to keep a reference to whatever dimensions

you create.

39

CHAPTER 3. SEFARAD 2.0

3.2.2 Queries pipeline Architecture

As a separate function of Sefarad 2.0, we have the possibility of defining our own data

sources as named URI endpoints, in order to define later our queries to those endpoints.

Having our queries we can modify them and test them against their endpoint, previewing

the results.

We will present the complete Sefarad workflow in the ”Interaction model” section. For

now, we will focus in how it works:

Sefarad has his own Dart server, from which we listen POST and GET petitions to

register and retrieve data. This server connects to a mongoDB database to store all data.

Below (3.10) we have the code that creates the mongoDB database and handles the http

GET requests:

/**

* Handle GET requests by reading the contents of data.json

* and returning it to the client

*/

void handleGet (HttpRequest req) {
HttpResponse r e s = req . re sponse ;

RegExp regex = new RegExp("([ˆ?=&]+)(=([ˆ&]*))?") ;

p r i n t ("${req.method}: ${req.uri.path}")

S t r ing d a t a f i l e = path + req . u r i . path . su b s t r i ng (1 , req . u r i .

path . l ength) + ".json" ;

addCorsHeaders (r e s) ;

i f (req . u r i . path == "/mongoDBquery") {
[. . .]

Db db = new Db(database) ;

DbCol lect ion c o l l ;

ObjectId id ;

db . open () . then ((c) {
pr in t (’connection open’) ;

c o l l = db . c o l l e c t i o n (c o l l e c t i o n) ;

r e s . headers . add (HttpHeaders .CONTENT TYPE, "application/

json") ;

t ry {
pr in t (JSON. decode (queryStr)) ;

Cursor cur so r = c o l l . f i n d (JSON. decode (queryStr)) ;

cu r so r . forEach ((Map v) {
var id = v ["_id"] ;

40

3.2. ARCHITECTURE

v . remove ("_id") ;

v ["_id"] = id . t oS t r i ng () ;

mongoDB . add (v) ;

}) . then ((dummy) {
r e s . statusCode = HttpStatus .OK;

//Here we return the results

r e s . wr i t e (JSON. encode (mongoDB)) ;

r e s . c l o s e () ;

}) ;

}
[. . .]

Listing 3.10: Dart Server Code

And here (3.11) we have the Dart code in charge of executing POST petitions and write

data into mongoDB:

/**

* Handle POST requests by overwriting the contents of data.json

* Return the same set of data back to the client.

*/

void handlePost (HttpRequest req) {
HttpResponse r e s = req . re sponse ;

p r i n t ("${req.method}: ${req.uri.path}") ;

S t r ing d a t a f i l e = path + req . u r i . path . su b s t r i ng (1 , req . u r i .

path . l ength) + ".json" ;

BytesBui lder b u i l d e r = new BytesBui lder () ;

addCorsHeaders (r e s) ;

req . l i s t e n ((L i s t < i n t > b u f f e r) {
b u i l d e r . add (b u f f e r) ;

i f (req . u r i . path == "/login") {
var data = new St r ing . fromCharCodes (b u f f e r) ;

p r i n t (data) ;

r e s . c l o s e () ;

}
var f i l e = new F i l e (d a t a f i l e) ;

var i oS ink = f i l e . openWrite () ; // save the data to the

file

i oS ink . add (b u f f e r) ;

41

CHAPTER 3. SEFARAD 2.0

i oS ink . c l o s e () ;

// return the same results back to the client

r e s . add (b u f f e r) ;

r e s . c l o s e () ;

} ,

onError : p r in tEr ro r) ;

}

Listing 3.11: Dart Server Code 2

As we can see, in the POST handler section we don’t make distinctions between what

type of data (queries or data sources) we are posting. This will be done from the specific

code of each form, maintaining the code unique for both branches.

Now lets talk about how the server handles data sources and queries data:

We have an HTML document dedicated to the definition of datasources, which contains

a form that pushes data into the server when the user defines a new datasource. Next

(3.12), we have the JSON of a defined datasource.

{
"Name" : "Dbpedia" ,

"Type" : "Sparql" ,

"Endpoint" : "http://dbpedia.org/sparql?default-graph-uri=http

://dbpedia.org&query=" ,

"Collection" : "" ,

"User" : "" ,

"Password" : ""

}

Listing 3.12: Datasource definition JSON

42

3.2. ARCHITECTURE

We then POST these data to the server from the Dart code associated to these data

sources definition page (3.13).

var queryVar = {
"Name" : name ,

"Type" : type ,

"Endpoint" : endPoint ,

"Collection" : c o l l e c t i o n ,

"User" : user ,

"Password" : password

} ;

da ta s e t s . add (queryVar) ;

que rySe l e c to r (’#saveSuccess’) . c l a s s e s . remove ("hide") ;

S t r ing jsonData = JSON. encode (da ta s e t s) ;

var r eque s t = new HttpRequest () ;

r eque s t . onReadyStateChange . l i s t e n (() {
i f (r eques t . readyState == HttpRequest .DONE &&

(reques t . s t a t u s == 200 | | r eque s t . s t a t u s == 0)) {
// data saved OK.

pr in t (" Data saved successfully") ;

}
}) ;

var u r l = "http://$host/web/dataset" ;

r eque s t . open ("POST" , u r l) ;

r eque s t . send (jsonData) ;

Listing 3.13: Datasources Data Sender

43

CHAPTER 3. SEFARAD 2.0

In the same way, we have a query definition page, where we defined through a form a

query data JSON object. Our query definitions must be able to handle query parameters

as we explain later. Here (3.14) we have an example of a query object in JSON format, as

we will save and get in the mongoDB repository.

{
"Name" : "Nobel laureates in <fieldOfScience> ordered by <order>

of birth date" ,

"Query" : "PREFIX : <http://dbpedia.org/resource/> [...]" ,

"Type" : "Sparql" ,

"Parameters0" : ["Nobel_laureates_in_Physics" , "

Nobel_laureates_in_Literature" , "

Nobel_laureates_in_Chemistry"] ,

"Parameters1" : ["ASC" , "DESC"] ,

"Parameters2" : [] ,

"Parameters3" : [] ,

"Parameters4" : [] ,

"Results" : "[{\"nobel\":{\"type\":\"uri\ [...]"

}

Listing 3.14: Query definition JSON

This is a more complex data structure. We give the query a name, a type that we will

use to edit it with an specific code editor, the parameters with the possible values and the

result (later we can use this result in the dashboard instead of querying it directly).

44

3.2. ARCHITECTURE

The POST code, located in the Dart document associated with the query creator and

editor form is listed below (3.15).

var queryVar = {
"Name" : name ,

"Query" : dataQuery ,

"Endpoint" : endPoint ,

"Type" : type ,

"Parameters0" : parameters0 ,

"Parameters1" : parameters1 ,

"Parameters2" : parameters2 ,

"Parameters3" : parameters3 ,

"Parameters4" : parameters4 ,

"Results" : ""

} ;

querys . add (queryVar) ;

que rySe l e c to r (’#saveSuccess’) . c l a s s e s . remove ("hide") ;

S t r ing jsonData = JSON. encode (querys) ;

var r eque s t = new HttpRequest () ;

r eque s t . onReadyStateChange . l i s t e n (() {
i f (r eques t . readyState == HttpRequest .DONE && (reque s t . s t a t u s

== 200 | | r eque s t . s t a t u s == 0)) {
pr in t (" Data saved successfully") ;

}
}) ;

var u r l = "http://$host/web/queries" ;

r eque s t . open ("POST" , u r l) ;

r eque s t . send (jsonData) ;

Listing 3.15: Query Data Sender

At last, we will review the SPARQL editor itself. It is an integration of the YASGUI

project1 inspired by the demo developed within the EuroSentiment2 project.

1http://yasgui.org/
2http://eurosentiment.eu/

45

CHAPTER 3. SEFARAD 2.0

When we write a query for Sefarad and want to include parameters with different values

we include them in the query between ’minus’, ’mayor’. This way, when the user selects a

new value, our code loops through the text replacing these key words by their real value.

This process of replacing is coded in the next code block (3.16).

function populateQueryWithParams () {
[. . .]

//Here is where we replace the parameters with the actual

values,

//using the events handler of the selectors:

$ ("#selector" + k) . change (function () {
var regex2 = / s e l e c t o r (\S+)/ i ;

var index = this . id . match (regex2) ;

var s e l e c t edParamete r s = this . va lue ;

query = query . r e p l a c e (match [index [1]] , s e l e c t edParamete r s) ;

match [index [1]] = se l e c t edParamete r s ;

i f (parsedData [j] ["Type"] == "Sparql")

yasqe . setValue (query) ;

else

$ ("#queryMongo") . va l (query) ;

}) ;

//We then reload YASQUE to show the new filled query:

i f (parsedData [j] ["Type"] == "Sparql") {
yasqe . setValue (query) ;

}
else {

$ ("#queryMongo") . va l (query) ;

}
return ;

[. . .]

}

Listing 3.16: SPARQL Editor Code

46

3.3. INTERACTION MODEL

3.3 Interaction model

In this section we will describe the usability design of Sefarad, or how it is though to be

used.

We will start by defining a data source through the user interface, and then we will see

how to define a query with various parameters, watching its results in a prepared dashboard.

3.3.1 Defining a data source

First of all we need to define the endpoint where we will point our queries to. This source

can be a SPARQL endpoint, as the fuseki server we are using for our Smart Open Data

project (see use cases), or mongoDB databases containing our data.

We will be prompted with this screen:

Figure 3.2: Add Data Source Web Page

Here we have to name the new data source, provide its valid URL and specify its type.

The type specification is important because we give auto-completion and code correction

support to various types of code, so we need to know the proper type to process it accord-

ingly.

After these few steps we can click on the save button and our datasource will be ready

to query from the rest of the elements of Sefarad.

47

CHAPTER 3. SEFARAD 2.0

3.3.2 Writing a query

Figure 3.3: Add Query Web Page

This is the main query definition screen, the place where we will initially construct our

query and its parametric structure (if desired that way).

As we can see, we can set various elements to configure our query. The objective of this

page is to enable a non technical user to use this query without the need of using code, so

we will have to do this coding part for him with an extra effort defining some parameters.

We have an ”advanced mode” button at the right top of the page. Pressing this button

we will enable the parameters option.

First of all, the query must have a name. In this name field is where we have to define

the parameters of the query. These parameters are nouns that can be changed for distinct

values in the query. For example, if we have a query that asks for the musical genre of a

band or artist, this artist could be a parameter: ”Musical genre of <artist>”.

Then, this ”artist” parameter will appear in the ”Parameters” section, and we will be

able to add new values as ”Elton John” or ”Aerosmith”.

Below these inputs we have to set the data source where we point our query.

48

3.3. INTERACTION MODEL

Now its time to properly write the query in the query in the matching editor, that will

be adequate for the type of data source selected. We just have to remember to write the

parameters between the < and > math symbols, so the code an properly replace them later.

Click the save button and all will be done.

3.3.3 Visualising and editing a query

Each dashboard that we create comes associated to a particular query. This query will be

automatically executed when the dashboard is loaded and its results are rendered in the

existing widgets.

But we have the choice to view and edit this associated query. In each dashboard we

have the option to display the query editor, with a tab control at the top of the page:

Figure 3.4: Dashboard Tabs

So, if we choose to see the query editor we will be prompted with this interface:

Here we can see the query’s code and can modify the value of the query parameters.

When we change the parameters on the selector, the code will be automatically changed,

so there is no need to know the query language to change it.

49

CHAPTER 3. SEFARAD 2.0

Figure 3.5: Query Editor

Figure 3.6: Query Editor

50

3.3. INTERACTION MODEL

After modifying the query you can execute it with the button below the query’s text.

When this happens, the query results will be rendered in a YASGUI element. We have

various ways of viewing the information: the raw response, on a table, on a pivot table or

a google chart.

Once we are fine with the results we have the option of saving the query (with the so

named button) so the next time we visit the dashboard it will show those results.

51

CHAPTER 3. SEFARAD 2.0

3.4 Widgets

In this section we will describe the widget system implemented in Sefarad-2.0. The first sub-

section will be an in-depth description of the common structure of every widget in Sefarad

and how they work. The second sub-section will be committed to a detailed description of

each widget we have developed until now.

3.4.1 Common implementation

Each widget in Sefarad must implement a common structure to work correctly for the

system. The outer shell of this structure is a Polymer element.

This Polymer element offers us a HTML template that each widget will fill differently,

a place for concrete styling, and an interface with the HTML of the dashboard and the rest

of the script code.

Lets focus now on the the JavaScript section of a Polymer web component. All widgets

contain these properties there:

• Crossfilter Object

• Dc.js Chart

• Crossfilter Dimension

• Crossfilter Group

• HTML parameters (optional)

• ”Ready()” function

• ”Init()” function

The main Sefarad-2.0 script will wait until the query data is retrieved and parsed on one

hand, and until all widgets are ready on the other. For that sake, every widget in Sefarad

will have to implement the css class ”dc-element”. The main script will count how many

widgets are in the dashboard on the page load event and will save that count number. From

then on, it will check periodically if the data is ready and if that number has reached zero.

But, how will it reach zero? Every widget will implement a ”Ready()” function, that

will access to that counter and reduce it in one unit. With this trick we can make sure that

52

3.4. WIDGETS

all widgets are ready at the moment of initializing them with the data. This is a problem

derived of Polymer’s operation. Polymer works in parallel with our main script, so we could

experience an scenario where our code would be ready to execute but Polymer was still

loading templates and assets.

Once all widgets are ready and the data is parsed, the code will create a new Crossfilter

object over the data and iterate through every widget. In this loop, we are setting its

Crossfilter Object property with this new one and calling its ”Init()” function. That function

will first initialize the widget parameters with those passed through the custom HTML tag.

Secondly, it will create the Crossfilter dimension form the Crossfilter object that we injected

from the outside and with the name of the data field we want to filter. At last, we will do the

specific rendering and construction work that, in case of Dc.js charts, will be instantiating

the chart and storing it in the corresponding widget property.

An empty and generic widget in Sefarad would look like the following code (3.17).

<template>

<!−− HTML content −−> <!−− c s s s t y l e −−>
</template>

<s c r i p t >

Polymer ({
c r o s s f i l t e r : {} ,

chart : {} ,

dimension : {} ,

group : {} ,

ready : function () {
numWidgets = numWidgets − 1 ;

} ,

i n i t : function () {
var p = this . param ; //params from the HTML tag

this . dimension = this . c r o s s f i l t e r . dimension (

function (d) {
return d [p] . va lue ;

}) ;

this . group = this . dimension . group () . reduceCount () ;

}
}) ;

</s c r i p t >

Listing 3.17: Generic Widget Structure

53

CHAPTER 3. SEFARAD 2.0

3.4.2 Specific implementation

In this section we will explain the implementation details of each widget of Sefarad 2.0,

presenting the initial problem to solve, the solution and the problems or limitations of each

technology used.

3.4.2.1 Faceted Search

We needed a faceted search widget like the one developed for the previous version of Sefarad.

This widget must integrate with the rest of the widgets, so it must implement at least one

Dc.js chart that makes it able to filter data.

We decide to develop a brand new widget with an accordion layout and based on boot-

strap style. The widget will have one section for each parameter of the data. Inside this

sections the different values with their counters will be displayed. These values will be

interactive so if we click on them, they will toggle filters.

Figure 3.7: Faceted Search Widget

54

3.4. WIDGETS

This code is developed under the template section of the web component. The HTML

code used for this purpose is listed in 3.18. It uses two templates repeated iteratively inside

an outer template div.

<template> [. . .]

<div id="accordion" class="panel-group">

<template repeat="{{d in dimensions}}">

<div class="panel panel-default">

<div class="panel-heading">

<h4 class="panel-title">

<div objectToHide="{{d[0]}}" on−c l i c k="{{

headerClick}}">{{d [0] } }
{{d[4]}}</ span>

</div>

</h4>

</div>

<div id="{{d[0]}}" class="panel-collapse collapse in">

<div class="panel-body">

<ul class="nav nav-pills nav-stacked">

<template repeat="{{p in d[2]}}">

< l i dimension="{{d[0]}}" on−c l i c k="{{

valueClick}}" class="active">

{{p[0]}}</

span>

{{p[1]}}</

span>

</ l i >

</template>

</div>

</div>

</template>

</div>

</template>

Listing 3.18: Faceted Search Template Code

55

CHAPTER 3. SEFARAD 2.0

Next (3.19), we have listed the implementation of the ”Init()” function.

i n i t : function () {

this . params = this . params . s p l i t (’,’) ;

f o r (var i= 0 ; i < this . params . l ength ; i++)

{
var s e l e c t o r F u n c t i o n = new Function ("d" , "

return d."+ this . params [i] +".value;") ;

var dim = this . c r o s s f i l t e r . dimension (

s e l e c t o r F u n c t i o n) ;

var chart = dc . customFacetedSearch () ;

chart . dimension (dim) ;

chart . group (dim . group () . reduceCount ()) ;

chart . polymer element = this ;

chart . dimensionName = this . params [i] ;

var va lue s = [] ;

var va l = dim . group () . reduceCount () . top (

I n f i n i t y) ;

f o r (var j= 0 ; j < va l . l ength ; j++)

{
va lue s . push ([va l [j] . key , va l [j] . va lue]) ;

chart . f i l t e r (va l [j] . key) ;

}

var element = [

this . params [i] ,

dim ,

values ,

chart

] ;

this . d imensions . push (element) ;

}//
}

Listing 3.19: Faceted Search Script Code

So, we are taking a list of parameters to take into account as the Polymer HTML tag

56

3.4. WIDGETS

parameters. Then, for each parameter, we create a Crossfilter’s dimension, a group over

that dimension, and a custom Dc.js chart (a script that inherits from Dc.js’s customChart

and overrides the onClick handler). Then, we explore all possible values with their counters

and store a custom data structure into a ”dimensions” property. In the template tag, on

the other hand, we iterate through this ”dimensions” and render them correctly.

This widget in particular fails at scaling to various thousands of data (even though

Crossfilter can handle them easily), slowing the execution. This effect is not observed in

chapter 5 (Evaluation), as we use a dataset that is not long enough to reproduce it. It would

be possible in theory to optimize the code to get a sensible performance improvement when

handling multiple thousands of data.

3.4.2.2 Results Table

This widget will be a table capable of rendering our current results and filter an individual

element when we click on it. In Sefarad 1.0 we had a similar widget, done from datatables

jQuery plugin. In this case, we cannot port that widget directly due to the malfunction of

jQuery plugins inside Polymer elements.

We chose to adapt an existing Polymer object, implementing a Dc.js chart inside and the

clickable functionality. The Polymer element is Steven skelston’s ”sortable-table” element

[15]

Figure 3.8: Results Table Widget

57

CHAPTER 3. SEFARAD 2.0

The HTML code of the results table makes extensive use of the data binding and repeat

templates features of Polymer. We can see an extract of this code that illustrate this

mechanisms in 3.20.

<template i f="{{!record.editMode}}" r e f="{{rowTemplate}}" bind>

<template repeat="{{column in columns}}" bind>

<template r e f="{{column.cellTemplate || cellTemplate}}" bind="

{{record.fields[column.name]}}">

<td class="column-{{column.name}}

{{sortColumn == column.name && sortDescending ? ’sorted-

column-desc’ : ’’}}

{{sortColumn == column.name && !sortDescending ? ’sorted-

column-asc’ : ’’}}">

<template i f="{{column.name == ’dbpediaLink’}}"><a t a r g e t="

_blank" h r e f="{{value}}">{{value}}</template>

<template i f="{{!(column.name == ’dbpediaLink’)}}"

>{{value}}</template></td>

</template>

</template>

</template>

Listing 3.20: Results Table HTML Code

The most noticeable change in the code has been the inclusion of filter effects in the

table event handlers (3.21).

se lectedChanged : function (a , va l) {
i f (va l) {

i f (this . i sArray (va l)) {
i f (! this . m u l t i S e l e c t) this . m u l t i S e l e c t = true ;

} else {
i f (this . m u l t i S e l e c t) this . m u l t i S e l e c t = fa l se ;

}
this . dcChart . f i l t e r (va l . name) ; //toggle filter

dc . redrawAll () ;

}
}

Listing 3.21: Results Table Modifications Code

As we can see, we filter by the data’s ”name” property by default (although it can be

abstracted) each time an element is clicked.

58

3.4. WIDGETS

3.4.2.3 Pie Chart

This widget is the straight implementation of the Dc.js pie-chart. It follows all rules de-

scribed in their documentation, and all we have to do is to expose its parameters to the

outside via the custom HTML tag parameters.

Figure 3.9: Pie Chart Widget

All we have to take care about is the problems between Polymer and Dc.js when styling

and taking divs, as described in the appendixes.

The next block of code (3.22) illustrates the creation of the chart, where we list the

HTML template and the init function.

59

CHAPTER 3. SEFARAD 2.0

<template>

<!−− dc s t y l e −−>
< l i n k r e l="stylesheet" type="text/css" h r e f="dc.css" media="

screen" />

<div id="chart"></div>

</template>

[. . .]

i n i t : function () {
var p = this . param ;

this . dimension = this . c r o s s f i l t e r . dimension (function (d) {return d

[p] ; }) ;

this . group = this . dimension . group () . reduceCount () ;

this . chart = dc . pieChart ("#chart") ;

this . chart

. o r d i n a l C o l o r s (["#1E7751" ,"#07A360" ,"#21553F" ,"#25342E"

])

. width (175) . he ight (175)

. dimension (this . dimension)

. group (this . group)

. innerRadius (30)

. root () [0] [0] = this . $. chart ;

this . $. chart . c l a s s L i s t . add ("dc-chart") ;

}

Listing 3.22: Pie Chart Code

As further improvements, there are still some parameters that could be abstracted from

the initialization and set from the outside of the widget.

60

3.4. WIDGETS

3.4.2.4 Bar Chart

This widget is another integration of an existing Dc.js chart into a Polymer element. This

bar chart is documented in the Dc.js website.

Figure 3.10: Bar Chart Widget

We apply the same integration rules that with the pie chart widget (3.23).

<template>

<!−− dc s t y l e −−>
< l i n k r e l="stylesheet" type="text/css" h r e f="dc.css" media="

screen" />

<div id="chart"></div>

</template>

[. . .]

i n i t : function () {

var p = this . param ;

this . dimension = this . c r o s s f i l t e r . dimension (

function (d) {
return d [p] . va lue ;

}) ;

this . group = this . dimension . group () . reduceCount () ;

this . chart = dc . barChart ("#chart") ;

var width = par s e In t (this . width) ;

61

CHAPTER 3. SEFARAD 2.0

this . chart

. width (width) . he ight (150)

. dimension (this . dimension)

. group (this . group)

. x (d3 . s c a l e . l i n e a r () . domain ([this . xMin ,

this . xMax]))

. gap (0 . 0005)

. yAxisLabel ("")

. xAxisLabel (this . xLabel)

. root () [0] [0] = this . $. chart ; //we pass explicitly

the root div to Dc.js

this . $. chart . c l a s s L i s t . add ("dc-chart") ; //add the

dc-chart to allow Dc.js to style the chart;

}

Listing 3.23: Bar Chart Code

3.4.2.5 Bubble Chart

As the previous one, this is a straight implementation of the Dc.js bubble chart into a

Polymer element.

Figure 3.11: Bubble Chart Widget

62

3.4. WIDGETS

The implementation is slightly larger that the previous two ones because there are more

parameters to set, as color and radius functions (3.24).

<template>

<!−− dc s t y l e −−>
< l i n k r e l="stylesheet" type="text/css" h r e f="dc.css" media="

screen" />

<div id="chart"></div>

</template>

[. . .]

i n i t : function () {

var p = this . param ;

this . dimension = this . c r o s s f i l t e r . dimension (function (d) {
return d [p] . va lue ;

}) ;

this . group = this . dimension . group () . reduceCount () ;

this . chart = dc . bubbleChart ("#chart") ;

this . chart

. t r a n s i t i o nD u ra t i on (500)

. margins ({
top : 10 ,

r i g h t : 50 ,

bottom : 30 ,

l e f t : 40

})

. width (300) . he ight (200)

. dimension (this . dimension)

. group (this . group)

. c o l o rAcce s s o r (function (d) {
return d . va lue ;

})

. keyAccessor (function (d) {
return d . key ;

})

. va lueAcces sor (function (d) {
return d . va lue ;

})

. rad iusValueAccessor (function (d) {

63

CHAPTER 3. SEFARAD 2.0

return d . va lue ;

})

. maxBubbleRelat iveSize (0 . 5)

. r enderHor i zonta lGr idL ines (true) // (optional) render

horizontal grid lines, :default=false

. r ende rVer t i c a lGr idL ine s (true)

. x (d3 . s c a l e . l i n e a r () . domain ([0 , this . xMax]))

. y (d3 . s c a l e . l i n e a r () . domain ([0 , this . yMax]))

. r (d3 . s c a l e . l i n e a r () . domain ([0 , this . r ad iu s]))

. e l a s t i c Y (true)

. e l a s t i c X (true)

. yAxisPadding (100)

. xAxisPadding (100)

. root () [0] [0] = this . $. chart ; //we pass explicitly the root

div to Dc.js

this . $. chart . c l a s s L i s t . add ("dc-chart") ; //add the dc-chart to

allow Dc.js to style the chart

}

Listing 3.24: Bubble Chart Code

The possibilities of this chart could be explored further in future dashboards, including

effects such as combining multiple parameters in its distinct variables (radius, color, x and

y axis).

64

3.4. WIDGETS

3.4.2.6 Number Chart

A number chart is a widget capable of display the total number of filtered elements in a

concrete dimension or the number of distinct values of an specific parameter remaining after

filtering.

You can choose between the two functionalities through the type parameter on the tag

interface. The two possibilities are ”param” and ”value”. When ”value” mode is selected,

you must specify which value you want to count, and the result will render the total count

of features that match that particular value. When ”param” modo is selected, the widget

will count how many distinct values can be found among the filtered data.

Moreover, we have designed two different skins for this widget:

Figure 3.12: Number Chart Widget, skin 1

Figure 3.13: Number Chart Widget, skin 2

65

CHAPTER 3. SEFARAD 2.0

The first skin appears in the ”restaurants” demo, and is a straight implementation of the

AdminLTE predefined number chart. In this case, the only element driven by the Polymer

element is the text with the actual number, styled with the same sheets than the rest of

the AdminLTE widgets.

This fact means that, in this case, it doesn’t exist a complete encapsulation of the

widget inside Polymer. We can’t inject all content in the Polymer element due to some

animated interaction provided by the AdminLTE code which, in case of being everything

inside Polymer, would not be able to reach the content inside the shadow DOM.

The second skin suffers from the same issue but, in its case, it has control over two

elements outside of its Polymer, the percent span and the progress bar component.

In code (3.25) we will try to set those two external elements (in the case of the second

skin) and catch the error if none of them are found (in the first case).

<template>

<!−− dc s t y l e −−>
< l i n k r e l="stylesheet" type="text/css" h r e f="dc.css" media="

screen" />

<div id="chart"></div>

</template>

[. . .]

i n i t : function () {

var vCount = this . valueToCount ; //HTML custom tag parameter

var va l = dim . group () . a l l () ;

f o r (var k= 0 ; k < va l . l ength ; k++)

{
i f (va l [k] . key == vCount) this .MAX = val [k] . va lue ;

}
this . chart = dc . numberDisplay ("#chart") ;

i f (this . type == "param") //first widget type

{
var v = this . param ;

var MAX2 = this . dimension . group () . a l l () . l ength ;

this . chart

. va lueAcces sor (function (d) {

66

3.4. WIDGETS

var aux = [] ;

var va l = dim . group () . a l l () ;

f o r (var k= 0 ; k < va l . l ength ; k++) {

i f (va l [k] . va lue != 0) aux . push (va l [k]) ;

}
var percent = (aux . l ength / MAX2) ∗100 ;

percent = Math . round (percent) ;

t ry {
document . que rySe l e c to r (".percent-" + v) .

textContent = percent + "%" ;

document . que rySe l e c to r (".progress-bar-" + v

) . s t y l e . width = percent + "%" ;

} catch (e) {
//no progress bar and percent text found.

}
return aux . l ength ;

})

. group (this . group)

. root () [0] [0] = this . $. chart ; //we pass explicitly

the root div to Dc.js

}
i f (this . type == "value") //second widget type

{
var v = this . valueToCount ;

var MAX = this .MAX;

var aux = 0 ;

this . chart

. formatNumber (d3 . format (",3d"))

. va lueAcces sor (function (d) {

var va l = dim . group () . a l l () ;

f o r (var k= 0 ; k < va l . l ength ; k++) {
i f (va l [k] . key == v) {

aux = va l [k] . va lue ;

}
}
var percent = (aux/ MAX) ∗100 ;

percent = Math . round (percent) ;

t ry {

67

CHAPTER 3. SEFARAD 2.0

document . que rySe l e c to r (".percent-" + v) .

textContent = percent + "%" ;

document . que rySe l e c to r (".progress-bar-" + v

) . s t y l e . width = percent + "%" ;

} catch (e) {

}
return aux ;

})

. group (this . group)

. root () [0] [0] = this . $. chart ; //we pass explicitly

the root div to Dc.js

}
this . $. chart . c l a s s L i s t . add ("dc-chart") ; //add the dc-chart to

allow Dc.js to style the chart

}

Listing 3.25: Number Chart Code

To conclude we could give this widget another iteration to try encapsulating all its code

so the final result is clean and reusable, as it is aimed in Polymer’s philosophy.

68

3.4. WIDGETS

3.4.2.7 Reviews (Custom Widget example)

This widget respond to a specific application need in the ”tourpedia” places demo. In this

demo, we needed to query a web service in case that only one element remained unfiltered

(e.g. the user has selected one place in). Therefore, this widget needs to access to the Dc.js

filters in order to check how many elements remain. The result of the web service query is

the rendered in a table with the help of Polymers iterator HTML constructor that binds

template shapes to data. Once the data has been retrieved and rendered the widget seems

like this:

Figure 3.14: Reviews Custom Widget

In order to include this new functionality, we have overwritten the valueAccessor()

function of the regular numberDisplay Dc.js widget. In a wide view, it counts how many

features are filtered each time it needs to access the value to render. If it is equal to one,

an asynchronous petition is fired. If it is not, it destroys all the HTML content and renders

an informative message.

In the next block of code (3.26) we detail how the implementation is done. The HTML

part, the template, implements only a div that we later fill from this script code.

. va lueAcces sor (function (d) {
var va l = dim . group () . a l l () ;

var aux = [] ;

f o r (var k = 0 ; k < va l . l ength ; k++) {
i f (va l [k] . va lue != 0) aux . push (va l [k]) ;

}
i f (aux . l ength == 1) {

var i d = aux [0] . key ;

$. getJSON ("http://tour-pedia.org/api/getReviewsByPlaceId?

placeId=" + id , function (data) {
parsedData = data ;

69

CHAPTER 3. SEFARAD 2.0

i f (parsedData . l ength == 0) {
tab leDiv . innerHTML = "No reviews of this place" ;

} else {
tab leDiv . innerHTML = "" ;

var t b l=document . createElement (’table’) ;

t b l . className += "table table-striped" ;

t b l . s t y l e . width=’100%’ ;

f o r (var i = 0 ; i < parsedData . l ength ; i++){
var t r = t b l . insertRow () ;

var td = t r . i n s e r t C e l l () ;

td . appendChild (document . createTextNode (

parsedData [i] . t ex t)) ;

td . s t y l e . width = "85%" ;

td = t r . i n s e r t C e l l () ;

td . appendChild (document . createTextNode (

parsedData [i] . r a t i n g)) ;

var img = document . createElement ("img") ;

img . s r c = "https://cdn4.iconfinder.com/data/

icons/pretty_office_3/256/Star-Full.png" ;

img . s t y l e . he ight = "15px" ;

td . s t y l e . width = "15%" ;

td . s t y l e . t ex tAl i gn = "center" ;

td . appendChild (img) ;

}
tab leDiv . appendChild (t b l) ;

}
}) ;

} else {
tab leDiv . innerHTML = "Select one place" ;

}
return 0 ;

})

Listing 3.26: Reviews Widget Code

This widget comes to illustrate how you can use Polymer components to fulfil a specific

dashboard need with little effort.

70

3.4. WIDGETS

3.4.2.8 Map

This map is the integration of a leaflet map with a Dc.js base chart, all working as a Polymer

component.

Figure 3.15: Polygons Map Widget

First, we use the geoJSON layer that leaflet features to render the polygonal data in the

correct coordinates. Then we have to transform this map into a Dc.js chart.

The key to solve this complex task is to rewrite the Dc.js’s base chart code so it can

handle all filter changes and update the map accordingly. We can take advantage of leaflet’s

click feature that enables us to identify which polygon we have selected, and render a pop-up

over it.

Below (3.27) we find the code of our custom Dc.js chart.

71

CHAPTER 3. SEFARAD 2.0

var s e l e c t F i l t e r = function (e) {
i f (! e . t a r g e t) {

return ;

}

var f i l t e r = e . t a r g e t . key ;

dc . events . t r i g g e r (function () {

cha r t . f i l t e r (f i l t e r) ;

i f (cha r t . f i l t e r s () . indexOf (f i l t e r) != −1) {
cha r t . mustReDrawBool (fa l se) ;

} else {
cha r t . map() . closePopup () ; //avoid showing the popup,

cause we are deselecting.

}

dc . redrawAll (cha r t . chartGroup ()) ;

}) ;

} ;

Listing 3.27: Map Widget onClick Code

We are using a variation of Boyan Yurukov’s implementation, with a great performance

boost: In Yurukov’s widget each time we update the data, the map is destroyed and recon-

structed while in our case (3.28) we play with the styling so all we have to do is highlight

the selected ones and hide the filtered without more workload.

72

3.4. WIDGETS

var f e a t u r e S t y l e = function (f e a t u r e) {
var opt ions = cha r t . f ea tureOpt ions () ;

i f (opt ions i n s t a n c e o f Function) {
opt ions = opt ions (f e a t u r e) ;

}
opt ions = JSON. parse (JSON. s t r i n g i f y (opt ions)) ;

var v = dataMap [cha r t . f eatureKeyAccessor () (f e a t u r e)] ;

i f (v && v . d) {
opt ions . c o l o r = ’#B9A081’ ;

opt i ons . f i l l C o l o r = ’#B9A081’ ,

opt i ons . weight = 1 . 5 ;

opt i ons . opac i ty = 0 . 6 ;

opt i ons . f i l l O p a c i t y = 0 . 4 ;

i f (v . d . va lue == 1) {
opt ions . c o l o r = ’blue’ ;

opt i ons . f i l l C o l o r = ’blue’ ,

opt i ons . weight = 1 . 5 ;

opt i ons . opac i ty = 0 . 5 ;

opt i ons . f i l l O p a c i t y = 0 . 2 ;

}
i f (cha r t . f i l t e r s () . indexOf (v . d . key) !== −1) { //selected

in this chart

opt ions . c o l o r = ’#FD8F00’ ;\
subs e c t i on {

Polygons Map

}
opt ions . f i l l C o l o r = ’#FD8F00’ ,

opt i ons . weight = 2 ;

opt ions . opac i ty = 0 . 6 ;

opt i ons . f i l l O p a c i t y = 0 . 4 ;

}
}
return opt ions ;

} ;

Listing 3.28: Map Widget Styling Code

73

CHAPTER 3. SEFARAD 2.0

Then we can assign pop-ups to each feature pre-processing at data load (3.29).

var proce s sFeature s = function (f ea ture , l a y e r) {
var v = dataMap [cha r t . f eatureKeyAccessor () (f e a t u r e)]

i f (v && v . d) {
l a y e r . key = v . d . key ;

i f (cha r t . renderPopup ()) {
l a y e r . bindPopup (cha r t . popup () (v . d , f e a t u r e)) ;

}
i f (cha r t . brushOn ()) {

l a y e r . on ("click" , s e l e c t F i l t e r) ;

}
}

} ;

Listing 3.29: Map Widget Pop-up Code

In a new study case, ”tourpedia”, we need to render thousands of locations at the same

time. This scale force us to look for an optimized solution as clustering techniques. In

this context we have developed an adaptation of this widget that, over the previous base,

implements the ”markercluster” leaflet plugin. This widget maintains all the functionality

of the polygonal map but the visual appereance.

Figure 3.16: Marker Map Widget

74

3.5. SUMMARY

3.5 Summary

In this chapter we have reviewed in depth Sefarad’s structure and functionality. We have

seen in first place its architecture, explaining the details of each module. After that we have

defined the interaction model, or how is it supposed to be used by the final user. Then,

we have listed and explained the widgets structure and the implementation details of each

one of those which we have used in the three case studies. Finally we have go through the

process of designing and implementing a new dashboard from an empty template.

75

CHAPTER 3. SEFARAD 2.0

76

CHAPTER4
Case Study

This chapter covers the process of implementation of Sefarad 2.0 to three different

datasets. We will explain the origin of the data and their structure, analysing its

virtues and lacks. Then we will provide a detailed description of the analysis widgets

for each one.

77

CHAPTER 4. CASE STUDY

78

4.1. INTRODUCTION

4.1 Introduction

In this chapter we present the three use cases we have applied Sefarad 2.0 to.

The first one is the reconstruction of the Sefarad 1.0 demonstration for the Smart Open

Data project. This case will be centred in the development of tools for rendering and filter

polygonal areas. We will analyse the facets lackness of this dataset, giving ideas of how to

solve it.

The second case also shares a dataset with Sefarad 1.0 and aim to develop a more

complete analysis dashboard taking advantage of the data’s great quantity of information.

We will go through the designing process and give our conclusions.

The last case is the most complete and unify the quality of data with the quantity,

aiming to demonstrate the power of crossfilter and dc at the same time that it offers a well

designed graphical interface.

79

CHAPTER 4. CASE STUDY

4.2 Slovak Demo: Smart Open data

4.2.1 Origin

This case study is implemented in the context of Smart Open Data. This European project

aims to create a Linked Data infrastructure fed by public and freely available data resources

for biodiversity and environment protection and research in rural and protected areas or

national parks.

This first case study served as a design base at the first development stages. It is mostly

a redo of the last project and the final product must implement the same functionality in

a smarter and cleaner way.

We will work with the dataset provided by the Slovak Environmental Agency (SEA1)

about harmonised protected sites dataset according to INSPIRE2 Data Specification on

Protected Sites – Guidelines through WFS service interface.

SEA provided source files for Geoserver workspaces related to Slovak protected sites

feature type. Source files can be downloaded from SEA website3.

The data has the following fields and information values, which will be used to test

faceted browsing and geo filtering with ECQL4.

1http://www.sazp.sk/
2http://inspire.ec.europa.eu/
3http://inspire.geop.sazp.sk/geoserver/www/eenvplus/ps harmonisation.tgz
4http://docs.geoserver.org/latest/en/user/filter/ecql reference.html

80

4.2. SLOVAK DEMO: SMART OPEN DATA

INSPIRE Designation SK Designation SK Legislation

natura2000/siteOfCommunity OImpor-

tance

Uzemia europskeho vyz-

namu/ Sites of Commu-

nity importance

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

natura2000/specialProtectionArea Chranene vtacie

uzemia/ Special protec-

tion areas

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

ramsar/ramsar Ramsar/Ramsar sites Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

UNESCOWorldHeritage/natural Unesco/Unesco natural

heritage sites

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

UNESCOManAndBiosphereProgramme/

biosphereReserve

Biosfericke rezerva-

cie/Biosphere reserves

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

IUCN/nationalPark
Velkoplošné chránené

územia/Large scale

protected ares Národný

park/National park

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Velkoplošné chránené

územia/Large scale pro-

tected ares Chránené

krajinné oblasti /Pro-

tected landscape area

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

81

CHAPTER 4. CASE STUDY

IUCN/strictNatureReserve

Maloplošné chránené

územia (Small

scale protected ar-

eas): Pŕırodná rez-

ervácia/Nature reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia (Small scale

protected areas):

Národná pŕırodná

rezervácia/National

nature reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale pro-

tected areas): Ochranné

pásmo pŕırodnej rez-

ervácie/Buffer zone of

natural reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Ochranné pásmo

národnej pŕırodnej rez-

ervácie/Buffer zone of

national nature reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

IUCN/ naturalMonument

Maloplošné chránené

územia(Small scale

protected areas):

Chránený krajinný

prvok/Protected land-

scape element

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

82

4.2. SLOVAK DEMO: SMART OPEN DATA

Maloplošné chránené

územia(Small scale pro-

tected areas): Pŕırodná

pamiatka/Natural

monument

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Národná pŕırodná

pamiatka/National

natural monument

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected ar-

eas): Chránený

areál/Protected site

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Ochranné pásmo

pŕırodnejpamiatky/Buffer

zone of natural monu-

ment

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Ochranné pásmo

národnej pŕırodnej

pamiatky/Buffer zone

of national natural

monument

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

83

CHAPTER 4. CASE STUDY

IUCN/ wildernessArea

Maloplošné chránené

územia(Small scale pro-

tected areas): Ochranné

pásmo chráneného

areálu/Buffer zone of

protected site

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Chránené krajinné

územie (Protected

landscape area)

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Table 4.1: Data INSPIRE designation

84

4.2. SLOVAK DEMO: SMART OPEN DATA

In this case, we store the information into a local Fuseki database and we query it from

Sefarad. The Query we execute for retrieving the corresponding information is shown below.

PREFIX dr f : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>

PREFIX j . 0 : <http :// i n s p i r e . j r c . ec . europa . eu/schemas/gn/3.0/>

PREFIX j . 1 : <http :// i n s p i r e . j r c . ec . europa . eu/schemas/ps /3.0/>

PREFIX j . 2 : <http :// i n s p i r e . j r c . ec . europa . eu/schemas/ base /3.2/>

PREFIX j . 3 : <http ://www. openg i s . net / ont / geosparq l#>

SELECT ∗
WHERE {
SERVICE <http :// l o c a l h o s t :3030/ s l o v a k i a /query> {

? r e s j . 3 : hasGeometry ?fGeom .

?fGeom j . 3 :asWKT ?fWKT .

? r e s j . 1 : s i t e P r o t e c t i o n C l a s s i f i c a t i o n ? spc .

? r e s j . 1 : LegalFoundationDate ? l f d .

? r e s j . 1 : LegalFoundationDocument ? l f d o c .

? r e s j . 1 : i n s p i r e I d ? i n s p i r e .

? i n s p i r e j . 2 : namespace ?namespace .

? i n s p i r e j . 2 : namespace ? l o c a l I d .

? r e s j . 1 : s i t e D e s i g n a t i o n ? s i t e D e s i g n a t i o n .

? s i t e D e s i g n a t i o n j . 1 : percentageUnderDes ignat ion ?

percentageUnderDes ignat ion .

? s i t e D e s i g n a t i o n j . 1 : d e s i gna t i on ? de s i gna t i on .

? s i t e D e s i g n a t i o n j . 1 : des ignat ionScheme ? des ignat ionScheme .

}
}

LIMIT 10 ;

Listing 4.1: Slovak Demo SPARQL

85

CHAPTER 4. CASE STUDY

4.2.2 Structure and pre-process

This dataset contains a total of 1645 features. Each feature retrieved as a JSON element

looks like the following:

{
"res" : {

"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/SKNATS942"

} ,

"fGeom" : {
"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/geometry/SKNATS942"

} ,

"fWKT" : {
"datatype" : "http://www.opengis.net/ont/sf#wktLiteral" ,

"type" : "typed-literal" ,

"value" : "MULTIPOLYGON(((17.65642811769707

48.1686865811456,..., 17.65642811769707 48.1686865811456)))"

} ,

"spc" : {
"type" : "literal" ,

"value" : "natureConservation ecological environment"

} ,

"lfd" : {
"type" : "literal" ,

"value" : ""

} ,

"lfdoc" : {
"type" : "literal" ,

"value" : ""

} ,

"inspire" : {
"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/inspireId/SKNATS942"

} ,

"namespace" : {
"type" : "literal" ,

"value" : "SK:GOV:MOE:SEA:PS"

86

4.2. SLOVAK DEMO: SMART OPEN DATA

} ,

"localId" : {
"type" : "literal" ,

"value" : "SK:GOV:MOE:SEA:PS"

} ,

"siteDesignation" : {
"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/siteDesignation/SKNATS942"

} ,

"percentageUnderDesignation" : {
"type" : "literal" ,

"value" : ""

} ,

"designation" : {
"type" : "literal" ,

"value" : "wildernessArea"

} ,

"designationScheme" : {
"type" : "literal" ,

"value" : "IUCN"

}
}

Listing 4.2: Slovakia results JSON example

87

CHAPTER 4. CASE STUDY

Lets break this code into pieces, taking in consideration only relevant information:

• Linked Data URI (res): Each element has a unique URI direction following Linked

Data directives.

• feature Well Known Text (fWKT): Contains a multi-polygon element describing

the geometry of each feature.

• name: The area’s name.

• Designation: Abstract base type for code lists containing the classification and des-

ignation types under different schemes. Some of these designation and classification

lists are closed (for example, Natura2000), while some change regularly. Defined under

the INSPIRE directive.

The possibilities are: strict nature reserve, site of community importance, natural

monument, wilderness area, special protection area, ramsar, protected landscape or

seascape, biosphere reserve, national park, natural.

• Designation Scheme: The scheme used to assign a designation to the Protected

Sites. Schemes may be internationally recognised (for example, Natura2000 or the

Emerald Network schemes), or may be national schemes (for example, the designa-

tions used for nature conservation in a particular Member State). Defined under the

INSPIRE directive.

The possibilities are: IUCN, natura 2000, ramsar, UNESCO man and biosphere pro-

gram, UNESCO world heritage.

88

4.2. SLOVAK DEMO: SMART OPEN DATA

4.2.3 Analysis Design

As it can be observed, this dataset offers a limited number of parameters to filter and render,

so we have focused on the three most representative of them: designation, designation

scheme, and polygonal data.

At first place, on the top left of the dashboard, we have placed a faceted search widget

for the designation and designation scheme:

Figure 4.1: Slovak Faceted Search

89

CHAPTER 4. CASE STUDY

At its side, we have placed the polygonal map, rendering all polygons at once and

implementing pop-ups with the features name, selection on click and interaction with other

widgets:

Figure 4.2: Slovak Map

Below the map we have a results table, capable of filtering on double click and displaying

the name, designation and designation scheme of the filtering results.

Figure 4.3: Slovak Results Table

90

4.2. SLOVAK DEMO: SMART OPEN DATA

At last, we have set two pie chart widgets to offer the same filtering functionality of the

faceted search over designation and designation scheme but in a graphical way:

Figure 4.4: Slovak Pie Charts

91

CHAPTER 4. CASE STUDY

4.2.4 Conclusions

As we can see, this dataset provides a lot of features with great polygonal detail and it

success at its map demonstration purpose.

However, it doesn’t contain much useful information about the features. One possible

solution to apply in future iterations would be look for facets for the data in external sources,

via federated SPARQL queries or web requests at post-processing time.

4.3 Restaurants Demo

4.3.1 Origin

The restaurants demo is an update of the one developed for Sefarad 1.0. In the past,

we found this dataset online and used it to demonstrate the capabilities of the recently

developed marker map. At the end, the demo was declined for the final project, as we

wanted to show polygons, and this restaurants data doesn’t have them. This dataset is a

compilation of restaurants from Madrid.

After the implementation of the Smart Open Data project demo, we started looking for

a dataset that had enough number of facets and values in order to show the true power of

dc.js in our widgets and inspire us for new widget designs.

The data has been obtained from different government website madrid.org5 and the

restaurants online browser yelp6.

The dataset can be queried at: http://demos.gsi.dit.upm.es/fuseki/restaurants/query

In this case, we will not query a SPARQL endpoint of an online dataset. We will store

the information in RDF format on a local server (Fuseki) and we will query it from Sefarad.

We have created two new databases in Fuseki: districts and restaurants.

5http://www.madrid.org/nomecalles/
6http://www.yelp.com/madrid

92

4.3. RESTAURANTS DEMO

The SPARQL query for this case study is shown below.

PREFIX rdfs : <http ://www. w3 . org /2000/01/ rdf−schema#>

PREFIX geo : <http ://www. openg i s . net / ont / geosparq l#>

PREFIX geo f : <http ://www. openg i s . net / de f / func t i on / geosparq l/>

PREFIX gn i s : <http :// smartopendata . g s i . d i t .upm. es /rdf/ gn i s/>

PREFIX gu : <http :// smartopendata . g s i . d i t .upm. es /rdf/gu/>

PREFIX dr f : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>

PREFIX dcterms : <http :// pur l . org /dc/ terms/>

PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>

PREFIX dbpedia−owl : <http :// dbpedia . org / property/>

p r e f i x t ex t : <http :// jena . apache . org / text#>

PREFIX gp : <http :// s e f a r a d . g s i . d i t .upm. es /rdf/gp/>

SELECT ∗ WHERE {

SERVICE <http :// l o c a l h o s t :3030/ d i s t r i c t s /query> {
? s geo : hasGeometry ?fGeom .

?fGeom geo :asWKT ?fWKT .

? s gu :GEOCODIGO ? geocodigo .

? s gu :DESBDT ? desbdt .

? s owl : sameAs ? dbpediaLink .

}

SERVICE <http :// l o c a l h o s t :3030/ r e s t a u r a n t s /query> {
?d ?p ?o

FILTER(REGEX(? o , ? desbdt))

}

SERVICE <http :// l o c a l h o s t :3030/ r e s t a u r a n t s /query> {
?d gp : p r i c e ? p r i c e .

?d gp : foodtype ? foodtype .

?d gp : s t a r s ? s t a r s .

}
}

Listing 4.3: Restaurants SPARQL Query

93

CHAPTER 4. CASE STUDY

4.3.2 Structure and pre-process

The data is a collection of 104 features with a rich set of facets. This is the JSON asociated

to one feature on the query response:

"s" : {
"type" : "uri" ,

"value" : "http://smartopendata.gsi.dit.upm.es/rdf/gu/Features

/773372"

} ,

"fGeom" : {
"type" : "uri" ,

"value" : "http://smartopendata.gsi.dit.upm.es/rdf/gu/Geometries

/90478c001031d2ab9e9c199257ecbbb2724edb77"

} ,

"fWKT" : {
"datatype" : "http://www.opengis.net/ont/sf#wktLiteral" ,

"type" : "typed-literal" ,

"value" : "MULTIPOLYGON (((444197.329 4477208.2759, ... ,

444197.329 4477208.2759)))"

} ,

"geocodigo" : {
"type" : "literal" ,

"value" : "7904"

} ,

"desbdt" : {
"type" : "literal" ,

"value" : "Salamanca"

} ,

"dbpediaLink" : {
"type" : "uri" ,

"value" : "http://dbpedia.org/resource/Salamanca_(Madrid)"

} ,

"d" : {
"type" : "uri" ,

"value" : "http://sefarad.gsi.dit.upm.es/rdf/gp/restaurants/casa-

julian-madrid-2"

} ,

"p" : {
"type" : "uri" ,

"value" : "http://sefarad.gsi.dit.upm.es/rdf/gp/district"

} ,

94

4.3. RESTAURANTS DEMO

"o" : {
"type" : "literal" ,

"value" : " Salamanca "

} ,

"price" : {
"type" : "literal" ,

"value" : ""

} ,

"foodtype" : {
"type" : "literal" ,

"value" : " Spanish "

} ,

"stars" : {
"type" : "literal" ,

"value" : "4.5"

} ,

"reservations" : {
"type" : "literal" ,

"value" : " Takes Reservations No "

} ,

"takeout" : {
"type" : "literal" ,

"value" : "No"

} ,

"lat" : {
"type" : "literal" ,

"value" : "40.429118500000001"

} ,

"long" : {
"type" : "literal" ,

"value" : "-3.6858382999999999"

}

Listing 4.4: Restaurants results JSON example

95

CHAPTER 4. CASE STUDY

So in the data we can found:

• Linked Data URI: Due to the fact of being organized in a RDF format following

the Linked Data Directive, each element has a unique URI direction.

• DbPedia Link: Each restaurant is linked by name to its corresponding dbPedia page

(if it exists).

• District: The restaurants are geolocated among all Madrid’s area, belonging to only

one district. The possible districts are: Chambeŕı, Usera, Latina, Retiro, Arganzuela,

Tetuán, Carabanchel, Salamanca and Vicálvaro.

• Food type: Each restaurant is tagged with its most noticeable type of food. There

are 43 different types of food among all the restaurants from Italian, Middle eastern

and Beer bars... to Juice Bars and Smoothies.

• Latitude and longitude: we can use them to geo-locate the restaurants and render

them in a map. All restaurants are within the bounds of Madrid city.

• Name: The most important facet, since it is the one that the user will look for

applying filters afterwards.

• Stars: Each restaurant is rated by its quality with a rating from 0 to 5 starts. Besides

that, our dataset doesn’t include any restaurant with a rating below 3, being the

ocurrences: 3, 3.5, 4, 4.5 and 5.

• TakeOut: This boolean facet shows if the restaurant offers the possibility of taking

away the food to eat it elsewhere.

• Price: Each feature has a price given a a range. We offer this raw information at

the data table, but for the sake of simplicity when filtering we have applied some

pre-processing, so we assign to each feature a price that is computed as the mean of

the extreme values of that range.

• Reservations: This is another boolean property that points if the restaurant can

handle reservations for their clients.

96

4.3. RESTAURANTS DEMO

4.3.3 Analysis Design

We have developed some widgets around this dataset trying to offer an example of a clear

and useful interface for filtering the data and retrieve interesting results.

At the top of the page we can find four number charts (implemented as the first skin)

to quickly put some interesting information at sight:

Figure 4.5: Number Charts

The first chart counts how many restaurants are left after the current filters. It is a

number chart set to count a parameter different values (in this case, the parameter is the

name, so it is counting how many different names are there).

The second counts how many districts can be found among the current data selection.

As the previous one, this chart is set to count the different values of a parameter (in this

case, district).

”Food types under selection” and ”Prices under selection” are set the same way, so they

are all counting distinct values of a given parameter.

With this four charts we can given a wide impression of how accurate and close is our

selection.

Next we have two pie charts handling filters for the ”reservations” and ”takeout” pa-

rameters:

Figure 4.6: Pie Charts

97

CHAPTER 4. CASE STUDY

We chose the pie chart for these two parameters due to their boolean nature, so it is

very easy to understand what they do with a simple eyesight.

At their side, we have two different widgets for the same property, the price:

Figure 4.7: Price Bar and Bubble Charts

The first one presents the price as a bar chart and able us to filter it in a given range

graphically moving its extremes.

The second one gives a more visual picture of which price is more present among the

data taking advantage of size, color and position of the bubbles. All these widget properties

are set to scale with the same price property.

98

4.3. RESTAURANTS DEMO

The last row are the two main widgets of this demo, the faceted search and results table

widgets:

Figure 4.8: Faceted Search and Results Table

The faceted search filters by two parameters: district and stars. It would be interesting

to add to this widget the parameter ”foodType”, but the idea was rejected due to the

amount of food types (values of that parameter). However, it could be possible to include

that parameter in the form of an accordion minimized (for the sake of a clean interface).

The table widget includes here the main parameters for all the selected features. It is

worth mentioning that we are including here the links to dbpedia for each feature. They

are functional, opening a new tab with the matching dbpedia page on click.

99

CHAPTER 4. CASE STUDY

4.3.4 Conclusions

As we can notice this is a much richer dataset comparing to the Slovak data. We have more

facets with a lot of values, enable us to be more creative in the interface design.

Besides, it fails at an important point: the quantity of features. 104 is a poor number

for the capabilities of crossfilter-dc.js, in order to really test them we will have to expand

this data or find a new one with more features.

4.4 Tourpedia Demo

4.4.1 Origin

After the two previous demonstrations we started looking for a dataset that has the good-

nesses of both of them. At one hand we need quantity of features to test the capabilities

of crossfilter and dc.js at the time of filtering huge amounts of data. On the other hand we

look for data quality, a rich dataset which allows us to develop a data analysis dashboard

that outputs a meaningful result.

In that quest we found Tourpedia. TourPedia is the Wikipedia of Tourism. It contains

information about accommodations, restaurants, points of interest and attractions of dif-

ferent places in Europe. At the moment eight cities are covered: Amsterdam, Barcelona,

Berlin, Dubai, London, Paris, Rome and Tuscany. However, they plan to extend the service

to all the world. Data are extracted from four social media: Facebook, Foursquare, Google

Places and Booking.

TourPedia provides two main datasets: Places and Reviews. Each place contains useful

information such as the name, the address and its URI to Facebook, Foursquare, Google-

Places and Booking. Reviews contain also some useful details ready for us to exploit.

TourPedia provides two methods to access data: through a Web API and a SPARQL

engine. It is exposed through the SPARQL engine as a linked data node, which provides

access to places. Reviews can only be accessed through web interface.

At first we downloaded the places dataset in JSON format (stored in Sefarad’s own

server), and lately we prepared a query to use their SPARQL endpoint. Due to its size, we

have clamp to a handleable number of features, taking places from just 3 cities and 2 types

of places: restaurants and attractions .

100

4.4. TOURPEDIA DEMO

4.4.2 Structure and pre-process

The data is a collection of 12.000 features with a rich set of facets. This is the JSON

asociated to one feature on the query response:

{
"id" : 223771 ,

"name" :"American Hotel" ,

"address" :"Leidsekade 97, Amsterdam, Netherlands" ,

"category" :"accommodation" ,

"location" :"Amsterdam" ,

"lat" : 5 2 . 363826 ,

"lng" : 4 . 8 81 3 6 9 ,

"numReviews" : 5 ,

"reviews" :"http:\/\/tour-pedia.org\/api\/getReviewsByPlaceId?

placeId=223771" ,

"polarity" : 8 ,

"details" :"http:\/\/tour-pedia.org\/api\/getPlaceDetails?id

=223771"

}

Listing 4.5: PLaces JSON example

This is the format taken from the downloaded JSON. The current response, queried

from the SPARQL endpoint, has the same format that the rest of the demos. In this case,

we have to transform the data format. That will be done in the main Sefarad script, after

the data is retrieved and before spreading it to the widgets.

101

CHAPTER 4. CASE STUDY

In these data, we can found the following information:

• Id: The unique id that each place has in their database.

• Name: Name of the place.

• Address: Detailed address of the place.

• Location: City in which the place is settled.

• Latitude - longitude: Coordinates used for rendering in the map.

• Number of reviews: Number of reviews stored in their online database.

• Reviews direction: URI of the web service where we can find the reviews asociated

to this place.

• Polarity: Number from 0 to 10 meaning the positive or negative impression that can

be inferred from the reviews of this site.

• Details direction: URI of the web service where we can find more facets of this

place.

102

4.4. TOURPEDIA DEMO

4.4.3 Analysis Design

We have analyse the information of this rich dataset the following way:

In the first row of widgets we have a marker map, containing all active results, and four

number charts in their second skin. These are: total elements selected (parameter type),

polarities under selection (parameter type), attractions (value type) and Accommodation

(value type).

Figure 4.9: Map and Number Widgets

Next, we have a row of proper filters: two pie charts, for category and location parame-

ters, one bar chart for the number of reviews, and a bubble chart for illustrating the weight

of each polarity in the dataset:

Figure 4.10: Filters

103

CHAPTER 4. CASE STUDY

At last, we have implemented a custom widget, the Reviews widget, explained in detail

in the ”Widgets” chapter; and the results table. The Reviews widgets will show reviews

only in the case of selection of only one element:

Figure 4.11: Reviews and Table widgets

4.4.4 Conclusions

This dataset is full of information, with a rich set of facets for each feature and has a great

number of features. We have clamp the total number of available features, taking only a

certain number of places from 3 cities, but in the complete dataset we can find places from

8 cities, reaching more than 100.000 features.

Due to these facts, we accept it as a final demonstration dataset. A possible future

work over this test would be storing the complete data on the server side and serve only

the relevant data to the Sefarad 2.0 application, so the number of possible features being

analysed would rise even more.

4.5 Summary

In this chapter we have described the three demonstrations that we have developed for

Sefarad 2.0, detailing in each one their lacks and their advantages.

We have develop for each one a description of the data origins and the structure of this

data as the pre-processing work that takes place. After that, we have justified the design

of the widgets used for analysing this data.

104

CHAPTER5
Evaluation

In this section we will present, test and analyse each prototype that we have developed

for this project. We will list for each one the introduced features and will measure the

quality of the filter system when the change is relevant.

105

CHAPTER 5. EVALUATION

106

5.1. INTRODUCTION

5.1 Introduction

This section describes each stage the project has gone through, explaining the pros and

cons of each step and why did we make each design decision.

We’ll start with the last version that output the last project at our development group,

Sefarad 1.0. In this project we produced a demo over a Slovakian dataset containing poly-

gons and different data for each one. This dataset will be maintained through the different

prototypes in order to obtain comparable and reliable conclusions.

Each section on this chapter describes one prototype, presenting images of the main

features, a changes log and description and a benchmark.

The benchmark is applied equally to all prototypes, being the ”custom filter prototype”

an exception. It consist on 5 different items:

• Page load time: time elapsed from the browser GET command to the data query sent

action, when all sub-technologies are ready and waiting for the query data.

• Data retrieved time querying 100 elements: time elapsed from the query sent action

to the data received and processed event (when all widgets have the data ready to

read from).

• Data retrieved time querying 1000 elements: the same test with an extra stress to the

loader system.

• Filter time for 100 data elements: time elapsed from the user click event to the point

where the filtered data is ready.

• Filter time for 1000 data elements: the same test with an extra stress to the filter

system.

107

CHAPTER 5. EVALUATION

5.2 Sefarad 1.0

This is our starting point. It has been developed through various projects and has grown

with new features and expansions with each iteration.

5.2.1 Description

Figure 5.1: Sefarad-1.0 Dashboard

108

5.2. SEFARAD 1.0

Figure 5.2: Sefarad-1.0 Query Editor

This version features various functional widgets:

• A map widget that is navigable and produces pop-ups on elements click, but is not

capable of interaction with other widgets further than being updated when data is

109

CHAPTER 5. EVALUATION

filtered (but it can not filter by itself).

• A data table, that includes a bunch of useful features like search and columns selection.

As the rest of the widgets, it is capable of update its content each time the data is

filtered.

• A couple of tag cloud widgets, organized in an accordion layout. This widget is the

only one capable of actively filter the data by different facet values.

• A SPARQL editor widget included in a separated tab. It can hold multiple query

templates with its respective values, that automatically updates the text editor bellow

them. It can also execute the query and show the result in a table or raw form.

It also includes a custom filter system that works with the output of one query and

process it, passing the result to each widget.

110

5.2. SEFARAD 1.0

5.2.2 Benchmark

Test msec

Page load time 395

Data retrieved time (100) 6625

Data retrieved time (1000) 40142

Filter time (100) 1312

Filter time (1000) 9344

5.2.3 Analysis

Although this version has served well for a number of implementations, it presents some

remarkable problems:

• Custom filter System: The filter system malfunctions and is not optimised. It is coded

inside the facet search widget’s code, what means that no other widget could filter

within this architecture.

• Poorly encapsulated code: Although there is a widget template definition, not all

widgets implement it, so there are many widget behaviours coded directly in a main

app file, which present difficulties to developers who might want to expand or modify

the system.

• Non flexible css style: the style of the application is a mess, distributed in various files

without a clear criteria and hardcoded.

• Not possible to add various widgets of the same type.

• Not scalable over hundreds of data elements.

• All widgets must share the same data, and is impossible to render in one widget the

result of distinct queries (which could be useful to represent different layers in the

map, for example).

111

CHAPTER 5. EVALUATION

5.3 Custom multi-query prototype

This prototype is an attempt to develop a brand new filter system which covers the main

issues of the original sefarad.

5.3.1 Description

Figure 5.3: Custom multi-query prototype dashboard

It features multiple queries execution and filtering. It also allows multiple widgets of

the same type. It is tested over a universities dataset, that in terms of load is similar to the

Slovakian polygons used in Sefarad 1.0.

The new selectors div on top of the widgets allow users to select which dataset you want

to render and filter on each widget.Abdullah Al

112

5.3. CUSTOM MULTI-QUERY PROTOTYPE

It worths the effort to specific how the filter system works in detail, since it marked the

path to follow on the next prototyping iterations. The main architecture is the following:

Figure 5.4: Multi Query Architecture

It aims to be a modular approach, so only one module of code would notice about the

filter mechanism and incoming data, being each widget a mere filter productor and data

receiver.

The controller is the module in charge of manage all widgets created. It can create,

destroy, look for and update widgets. It also manages all request a widget might have,

acting as interface between the widgets and the core.

The core implements various “streams” of data, acting like a parallel pipeline. It takes

the incoming data from the online data sources and pass them iteratively through all filters

of the stream. The output is still a set of independent filter results, so the core implements

an array unique merge function that outputs the final response.

This filtered data is the income of the widgets, which can analyse this data and produce

filters based on the user actions.

113

CHAPTER 5. EVALUATION

5.3.2 Benchmark

Test msec

Page load time 393

Data retrieved time (342) 1316

Filter time (342) 8

5.3.3 Analysis

The prototype still doesn’t solve many of the issues of the previous work like theme. It

could be observed that the results of the benchmark say this is a fast algorithm, but we

cannot take that as conclusion because we are working in different datasets.

Although this prototype works well, it also doesn’t solve effectively the subtle mess code

problem and still lacks a clear structure on some areas. Yet the filter between widgets is

not implemented due the necessity of redo all widgets to match the new approach.

The prototype is still raw and we would need a couple more iterations to make it fully

functional. However we might focus on the main structural problem and reformulate the

entire code for future work, so this branch of the project has been left.

114

5.4. BOOTSTRAP PROTOTYPE

5.4 Bootstrap prototype

The next step in our development was cleaning the user interface, providing a flexible and

well documented graphic framework to overcome the past problems.

We chose bootstrap to power these aspect of the app and, concretely, we based our

appearance on the Admin-LTE free theme1, property of Abdullah Almsaeed.

With this change, we eliminated the deep and messy code structure beyond the Sefarad

1.0 and included in this second version as less code as possible in order to keep it easy and

clear.

5.4.1 Description

Figure 5.5: Bootstrap Prototype Dashboard

1https://almsaeedstudio.com/preview

115

CHAPTER 5. EVALUATION

Under the graphical interface we have four widgets hardcoded in HTML5 and javascript,

without a defined common structure yet:

• Datatable : similar to the one you could find in Sefarad 1.0. Some work was needed

to adapt it to work under bootstrap. This datatable updates on data changes.

• OpenLayers map : the map from Sefarad 1.0 was developed under OpenLayers 1.0,

that was not compatible with bootstrap. This was not a straight forward task, due to

the differences between both versions in the projection procedures. The map updates

on data changes, but doesn’t offer further interaction.

• A donut chart taken from the resources of this adminLTE theme in order to demostrate

that they could be easily integrated.

• A new filter system, very smart coded and modular. It’s code creates the div con-

taining the values selector and manages user interaction. It also feeds the rest of the

widgets.

The architecture is much simple than its predecessors since it is the first prototype after

a code cleaning and doesn’t include much of the old features yet.

Figure 5.6: Bootstrap Prototype Architecture

116

5.4. BOOTSTRAP PROTOTYPE

5.4.2 Benchmark

Test msec

Page load time 405

Data retrieved time (100) 5051

Data retrieved time (1000) 14442

Filter time (100) 779

Filter time (1000) 5047

5.4.3 Analysis

The benchmark does not show a qualitative improvement from Sefarad 1.0 in the speed

aspect, but it improves indeed. The code is small and offers a solid ground to grow on.

FacetedSearch.js is a great library for filtering but sooner or later we would have to

break in its code and redesign its modularity. At it’s current state (jQuery plugin) is not

possible to access some important aspect from the outside.

Bootstrap covers all our needs in the GUI area. We will stick with it for the next

iterations.

117

CHAPTER 5. EVALUATION

5.5 Crossfilter.js + dc.js prototype

At this certain point of the development we discovered these two data visualization libraries,

and after taking conscience of their specifications we inmediately started working on their

integration, replacing facetedSearch and the current charts.

5.5.1 Description

Figure 5.7: Crossfilter.js + dc.js dashboard

Crossfilter is a powerful library that handles thousands of data with ease and proves

very helpful in the process of defining and grouping different data dimensions.

Dc.js is a beautiful chart renderer that hides in its insides a very well constructed system

that handles the filters and events of all the charts for us. From now on, each widget in

Sefarad that needs to filter or get filtered data will implement this chart structure inside.

For the moment we have not defined a clear widget structure, but this characteristic will

be crucial at the time of choosing it.

118

5.5. CROSSFILTER.JS + DC.JS PROTOTYPE

We have also changed the OpenLayers module for leaflet, a much more elegant and user

friendly solution that can we integrated inside a dc chart. In fact, every graphic library can

be framed inside a base dc chart, but is not an easy task, as dc lacks documentation. Luckily,

we found the previous work of Boyan Yurukov2, Bulgarian programmer, accomplishing this

same task, so we followed his steps and learn from it for future includes.

As result, the prototype features an interactive map, which can show a pop-up with the

name of the area and select it (having an impact on the rest of the widgets) and two donnut

charts for demonstration purposes.

5.5.2 Benchmark

Test msec

Page load time 160

Data retrieved time (100) 5598

Data retrieved time (1000) 14582

Filter time (100) 5

Filter time (1000) 27

5.5.3 Analysis

It takes practically the same time to retrieve the data elements than the same case in

Sefarad 1.0 but it drastically improves the performance on filtering.

After the benchmarks we decide to continue with crossfilter and dc due to their speed

and smartness.

2https://github.com/yurukov/dc.leaflet.js

119

CHAPTER 5. EVALUATION

5.6 Final Prototype: Web Components

5.6.1 Description

After the choice of the filter system, we just needed a widget structure. Until this point, all

widgets developed for Sefarad 2.0 where chunks of HTML and code exposed at the main

level. We started looking for a system that encapsulates each widget, so we can focus the

development on them without alter the rest of the framework.

This is where we include the web components philosophy in Sefarad 2.0, and we chose

Polymer as a framework to develop components.

5.6.2 Benchmark

We have maintained crossfilter as our filter system and the dataset chosen (Slovak data),

so the metrics are nearly the same of that case, with the web components not having a

noticeable impact on the filter time, but having a slight impact on the page load time(around

100 msec). This delay is produced by web components initialization, where they have to

inject their HTML templates and execute their init function. However, we evaluate this time

descent as acceptable given the advantages that web components offers to our application.

Test msec

Page load time 240

Data retrieved time (100) 5634

Data retrieved time (1000) 14653

Filter time (100) 5

Filter time (1000) 27

120

5.6. FINAL PROTOTYPE: WEB COMPONENTS

5.6.3 Analysis

We have reached a point on our development process where we got an stable and reliable

filter system and a convincing widget structure, so we can start growing from this point to

build some dashboards and face case study challenges.

The complete architecture and the working details are full explained in the chapter

”Sefarad 2.0”, as this prototype has become our actual application and has grown with a

lot of widgets and extra functionality.

121

CHAPTER 5. EVALUATION

5.7 Prototype comparison

Test Sefarad-1.0 Bootstrap Crossfilter + dc Web Components

Page load time 395 405 160 240

Data retrieved time (100) 6625 5051 5598 5634

Data retrieved time (1000) 40142 14442 14582 14653

Filter time (100) 1312 779 5 5

Filter time (1000) 9344 5047 27 27

The multi-query prototype is left out of this comparison due to its use of a different

dataset.

5.8 Summary

In this chapter we have reviewed every development stage of the project, from the prede-

cessor, Sefarad 1.0, to the current prototype.

We have set a few metrics to measure for each one in order to compare them and justify

our development decisions. For each one, we have taken that measures and given conclusions

about advantages and disadvantages of each technology or integration, as well as notes for

the next iteration.

As result, we have a set of technologies with a justified election that we are going to use

in Sefarad 2.0.

122

CHAPTER6
Conclusions and future lines

This chapter summarizes the conclusions extracted from this master thesis and eval-

uates if the objectives were achieved. After that, we discuss thoughts about future

work.

123

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

124

6.1. ACHIEVED GOALS

6.1 Achieved goals

In Chapter 1 we mentioned a list of goals for the project. The achieved goals can be

summarised as follows:

Study and test different web technologies reaching conclusions for each one

under certain criteria. This goal has been achieved successfully. Its results are presented

in Chapter 2, where we study and analyse the different technologies considered for the

different facets of the project .

Design the Architecture of the application through prototype iteration. This

goal has been achieved successfully. The complete architecture of the system and a detailed

explanation of all its modules and sub-modules is included in Chapter 3. Furthermore, this

iterative process is described in great detail in Chapter 5.

Compare and document the features of each iteration, benchmarking where

possible. This documentation and measurement has been also achieved, being the entire

task report located in Chapter 5.

Develop one or more case studies to test the final application and demon-

strate its possibilities. The result of this challenge has been evaluated in Chapter 4. We

have gone through three different use cases, analysing each one and evaluating their pros

and cons until we have reach a successful stage.

Document the final application to ease future developments or use cases.

We have committed the Chapter 3 to the detailed explanation and documentation of all

features of Sefarad 2.0, ending up with a well structured reference material for future Sefarad

developers.

125

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

6.2 Conclusions

This project has allowed us to perform a deep insight into the Semantic Web and Linked

Data and all its benefits. We have developed a functional application capable of query, sort

and filter linked data.

Part of this project has been developed in the scope of the SmartOpenData project

contributing to this European project, so we have worked with companies such as Tragsa1.

To work in a working group has helped us to organize tasks and responsibilities and has

forced us to organize with our partners.

We have used existing advanced technologies whenever it was possible, studying in depth

web components philosophy, dart workflow and dc.js integration issues. We have put all

of them together to build a solid and functional system. We have left a lot of tools and

frameworks on the way, not in vane but learning from each one to build a new and more

solid project stage.

We have learn from past experiences developing for Sefarad 2.0, identifying its weak-

nesses and designing a new architecture that assures the same functionality with easier

development.

We experienced big changes as early technology adopters, such as new versions of the

dart language and Polymer framework, fixing bugs and creating new functionalities. We

have found the need to test the tool in order to find failures and possible improvements.

Some of our modules and developments are the result of experimentation and detection of

new needs.

1http://www.tragsa.es/

126

6.3. FUTURE WORK

6.3 Future work

The project outcome can also serve as a solid base for future work and development. In

the following points some fields of study or improvement are presented to continue the

development, as well as areas of possible direct application of our framework:

• Develop an installer for Sefarad 2.0.

• Add widgets on the fly, developing a new set of graphical tools for the selection and

parameters settings.

• Explore the natural language processing area, implementing new widgets and core

functionalities that able a non technical user to query and explore the semantic web.

• Apply Sefarad 2.0 to new projects where data graphical analysis is needed, developing

new custom widgets in order to face new problems.

• Save dashboards with their complete widget configuration in our mongoDB repository.

Sefarad 2.0 is still young. As developers, we can find a lot of new functionality examples

in older web and tools as Payola, lodLive 2, cartoDB 3, etc.

All new ideas we could come across can be implemented in this new framework thanks

to the modularity of web components and the power of the rest of our technology selection.

2http://en.lodlive.it/
3http://cartodb.com/

127

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

128

APPENDIXA
How to build a dashboard

In this appendix we will explain the process we have followed to construct the demo dash-

boards that can be found on the demo of Sefarad 2.0.

129

APPENDIX A. HOW TO BUILD A DASHBOARD

130

A.1. DESIGN

A.1 Design

First come the information analysis: which fields are the results going to have? how many?

which type?

Once we know this information, we have to decide which widgets we want to integrate

in the dashboard and which facets is going to render each one.

Now that we have the information analysis design, its time to put it on the board.

First we have to create a new empty dashboard copying an existing one and erasing all its

components. Now we have to import all widgets that we are going to use in the ”Import

Zone” (A.1).

<!−− POLYMER COMPONENTS IMPORT ZONE −−>
< l i n k r e l="import" h r e f="polymer-elements/pie-chart/pie-chart.

html">

< l i n k r e l="import" h r e f="polymer-elements/bar-chart/bar-chart.

html">

< l i n k r e l="import" h r e f="polymer-elements/number-chart/number-

chart.html">

< l i n k r e l="import" h r e f="polymer-elements/leaflet-map/leaflet-

map.html">

< l i n k r e l="import" h r e f="bower_components/sortable-table/

sortable-table.html">

< l i n k r e l="stylesheet" h r e f="bower_components/sortable-table/

css/bootstrap.css" shim−shadowdom>

< l i n k r e l="import" h r e f="polymer-elements/faceted-search/

faceted-search.html">

< l i n k r e l="import" h r e f="polymer-elements/paper-shadow/paper-

shadow.html">

< l i n k r e l="import" h r e f="polymer-elements/paper-tab/paper-tabs.

html">

<!−− end/ POLYMER COMPONENTS IMPORT ZONE −−>

Listing A.1: Web Components Import Zone

131

APPENDIX A. HOW TO BUILD A DASHBOARD

Now we have to place the custom tags of the widgets with their corresponding param-

eters. See the widgets section of this work for reference. The placement can be done as

the user wants, but we encourage the user to follow the AdminLTE template, wrapping the

actual Polymer element inside the proper bootstrap divs, so we doesn’t break the current

look and feel of Sefarad 2.0. But, out of this recommendation, the user has total liberty of

placement for his components.

A.2 Widget Definition Example

Lets give an example of placing a widget in the dashboard, applied to the restaurants

dataset:

We start with an empty dashboard, as shown in figure A.1.

Figure A.1: Navigation Menu

Then we decide to include a pie chart widget that shows the percentage of restaurants

that are able to handle reservations. Then we have to create a bootstrap box and instan-

tiate our pie chart web component inside (A.2), taking care of setting its parameter to

”newReservations”, the facet we want to analyse.

132

A.2. WIDGET DEFINITION EXAMPLE

<div class="col-lg-3 col-xs-6">

<!−− pie−chart −−>
<!−−Widgets must have ’widget’ class in order to render t h e i r

l oad ing screen−−>
<div class="box box-primary widget">

<div class="box-header">

< i class="fa fa-inbox"></i>

<h3 class="box-title" id="here">Handle Reservat ions </h3

>

</div>

<!−− box−body −−>
<div class="box-body chart-responsive">

<pie−chart param="newReservations" class="dc-element"

></pie−chart>

</div>

<!−− / . box−body −−>
</div>

<!−− / . pie−chart −−>
</div>

Listing A.2: Widget Insertion

The result of this is the dashboard shown in figure A.2.

Figure A.2: Navigation Menu

133

APPENDIX A. HOW TO BUILD A DASHBOARD

A.3 Pre-processor

Once the widgets are ready, we have to write a preprocessor for this dashboard. In the body

div we have set an identifier id that we can retrieve form the controller, so we apply one

branch of pre-process code or another. In the future, this will be replaced by Dart code. In

the current state of the project however, this is how it is done.

For an example of this is achieved, please go to the ”preprocessor architecture” section.

Once the preprocessor is written, all will be set for feeding the widgets with data.

Now all that is left to do is reference this new dashboard in the rest of the web pages of

Sefarad 2.0, writing the corresponding code for the left navigation menu section:

Figure A.3: Navigation Menu

134

Bibliography

[1] T. Berners-Lee, Hendler, et al., “The semantic web,” Scientific american, vol. 284, no. 5,

pp. 28–37, 2001.

[2] F. J. Lopez-Pellicer, M. J. Silva, M. Chaves, F. J. Zarazaga-Soria, and P. R. Muro-Medrano,

“Geo linked data,” in Database and Expert Systems Applications, pp. 495–502, Springer, 2010.

[3] O. Lassila and R. R. Swick, “Resource description framework (rdf) model and syntax specifi-

cation,” 1999.

[4] C. Steenmans, M. Vanderhaegen, H. De Groof, J. Martin, I. Livbjerg, J. Ryttersgaard, J. Siev-

ers, M. Reuvers, A. Lillethun, A. Linsenbarth, et al., “Inspire scoping paper,” 2004.

[5] P. Archer, K. Charvat, M. Navarro, C. A. Iglesias, J. O’Flaherty, T. Robles, and D. Roman,

“Linked open data for environment protection in smart regions–the smartopendata project,”

2013.

[6] O. K. Ondra Heřmánek and Others, “Payola,” 2014.

[7] R. Team, “Redash.io,” 2015.

[8] D. Cooney, “Introduction to web components,” tech. rep., W3C, july 2014. Available at http:

//www.w3.org/TR/components-intro/.

[9] I. Square, “crossfilter,” 2015.

[10] T. K. Werner Kuhn and K. Janowicz, “Linked data - a paradigm shift for geographic information

science.,” 2010.

[11] F. J. López-Pellicer, M. J. Silva, M. S. Chaves, F. J. Zarazaga-Soria, and P. R. Muro-Medrano,

“Geo linked data.,” in DEXA (1), pp. 495–502, 2010.

[12] C. Bizer, T. Heath, and T. Berners-Lees, “Linked data - the story so far.,” in Special Issue

on Linked Data, International Journal on Semantic Web and Information Systems, pp. 1–22,

2009.

[13] R. Bermejo, “Desarrollo de un Framework HTML5 de Visualización y Consulta Semántica

de Repositorios RDF,” Master’s thesis, Universidad Politécnica de Madrid, ETSI Telecomuni-

cación, June 2014.

[14] R. Dı́az-Vega, “Design and implementation of an HTML5 Framework for biodiversity and envi-

ronmental information visualization based on Geo Linked Data,” Master’s thesis, Universidad

Politécnica de Madrid, ETSI Telecomunicación, December 2014.

135

http://www.w3.org/TR/components-intro/
http://www.w3.org/TR/components-intro/

BIBLIOGRAPHY

[15] S. Skelston, “sortable-table github,” 2015.

136

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Master thesis goals
	Structure of this Master Thesis

	Enabling Technologies
	Linked Data
	RDF
	SPARQL
	Geo Linked Data

	Web Components
	Custom HTML Elements
	HTML Imports
	Templates
	Shadow DOM

	Polymer
	Client-side web technologies
	Bootstrap
	Leaflet
	Crossfilter
	Dc.js

	Server-side web technologies
	MongoDB
	Fuseki

	Sefarad 1.0
	Summary

	Sefarad 2.0
	Introduction
	Architecture
	Dashboard Architecture
	Main module
	Data pre-processor module
	Web components
	Crossfilter-Dc.js

	Queries pipeline Architecture

	Interaction model
	Defining a data source
	Writing a query
	Visualising and editing a query

	Widgets
	Common implementation
	Specific implementation
	Faceted Search
	Results Table
	Pie Chart
	Bar Chart
	Bubble Chart
	Number Chart
	Reviews (Custom Widget example)
	Map

	Summary

	Case Study
	Introduction
	Slovak Demo: Smart Open data
	Origin
	Structure and pre-process
	Analysis Design
	Conclusions

	Restaurants Demo
	Origin
	Structure and pre-process
	Analysis Design
	Conclusions

	Tourpedia Demo
	Origin
	Structure and pre-process
	Analysis Design
	Conclusions

	Summary

	Evaluation
	Introduction
	Sefarad 1.0
	Description
	Benchmark
	Analysis

	Custom multi-query prototype
	Description
	Benchmark
	Analysis

	Bootstrap prototype
	Description
	Benchmark
	Analysis

	Crossfilter.js + dc.js prototype
	Description
	Benchmark
	Analysis

	Final Prototype: Web Components
	Description
	Benchmark
	Analysis

	Prototype comparison
	Summary

	Conclusions and future lines
	Achieved goals
	Conclusions
	Future work

	How to build a dashboard
	Design
	Widget Definition Example
	Pre-processor

	Bibliography

